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ABSTRACT
Model interchange approaches support the analysis of software 
architecture and design by  enabling a variety  of tools to 
automatically exchange performance models using a common 
schema. This paper builds  on one of those interchange formats, 
the Software Performance Model Interchange Format (S-PMIF), 
and extends it to support  the performance analysis of real-time 
systems. Specifically, it addresses real-time system designs 
expressed in the Construction and Composition Language (CCL) 
and their transformation into  the S-PMIF for additional 
performance analyses. This paper defines extensions and changes 
to  the S-PMIF meta-model and schema required for real-time 
systems. It describes transformations for both simple, best-case 
models  and more detailed models of concurrency and 
synchronization. A case study demonstrates the techniques and 
compares performance results from several analyses.

Categories and Subject Descriptors
C.4 [Performance of  Systems]: Modeling techniques; D.2.2 
[Software Engineering]: Design Tools and Techniques; D.2.12 
[Software Engineering]: Interoperability; I.6.4 [Simulation and 
Modeling]: Model Validation and Analysis

General Terms
Performance, Design

Keywords
Performance, software performance engineering, performance 
model, performance analysis, model interchange, real-time 
systems, architecture analysis, component-based systems

1.INTRODUCTION
Performance is a quality attribute that, in  spite of being critical to 
a large number of software systems, is often not appropriately 
addressed. As a result, many software-based systems fail to meet 
their performance requirements as implemented. Fixing 

performance problems often causes cost and schedule overruns 
and, in some cases, the software cannot be fixed and must be 
abandoned. 
Performance cannot be retrofitted; it  must be designed into 
software from the beginning. Our experience is  that performance 
problems are most often due to inappropriate architectural choices 
rather than inefficient coding. By the time the architecture is 
fixed, it  may be too late to achieve adequate performance by 
tuning. Thus, it  is important to be able to assess the impact of 
architectural decisions on quality requirements such as 
performance and reliability at the time that they are made.
Although sound performance analysis  theories and techniques 
exist, they are not widely used because they are difficult  to 
understand and require heavy modeling effort throughout the 
development process [1]. Consequently, software engineers 
usually resort to  testing to determine whether the performance 
requirements have been satisfied. To ensure that these theories and 
techniques are used, they must be made more accessible—
integrated into the software development process and supported 
with tools.
This paper illustrates an approach to making performance analysis 
more accessible. It makes several contributions:

• Demonstrates the use of standard performance modeling 
techniques for component-based real-time systems

• Illustrates the use of the Software Performance Model 
Interchange Format (S-PMIF) with  the Construction and 
Composition Language (CCL)

• Merges streams of research that have thus far been 
independent: predictable assembly of components, 
software performance engineering, and model interchange.

The next section provides some background on the merged 
streams of research, and then Section 3 discusses related work in 
these areas. Section 4 provides an overview of the Construction 
and Composition Language (CCL) and the ICM meta-model for 
CCL assemblies. Next, Section 5 presents  the revised S-PMIF 
meta-model  for real-time systems. Section 6 describes the 
implementation of the interoperability features. Section  7 presents 
a case study as proof of concept  and Section 8 offers some 
conclusions.
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2.BACKGROUND
As noted above, this work merges several distinct streams of 
research. This section describes  these streams and provides an 
overview of their merger. 

2.1Predictable Assembly
The research on  predictable assembly focuses  on the development 
of technologies  and  methods to enable the development of 
software with predictable runtime behavior [2-4]. The PACC 
initiative at the Software Engineering Institute proposes the use of 
smart constraints to achieve predictability by construction [5]. The 
idea behind  this concept  is that analysis  theories  rely on certain 
assumptions in order to be applicable, which means that  the 
behavior of a software system is predictable by a given theory 
only  if it  satisfies its assumptions. Smart constraints can guarantee 
the satisfaction  of these assumptions so that if a software system 
can be constructed  under these constraints, then its behavior can 
be predicted. Smart constraints can be enforced by different 
means, from automated checks at the architecture description 
level or design specification to imposition through component 
containers [6, 7].
Evaluation is as important as smart constraints in order to  achieve 
predictability by construction. Since the complexity of 
performance evaluation and the effort  required for creating the 
performance models has been cited as one of the root causes of 
software performance failures, it is critical to automate them to 
provide a solution to this recurring problem. One way of doing so 
is  by using reasoning frameworks [8]. A reasoning framework 
encapsulates an analysis theory, the generation of theory specific 
models from the architecture or design specification, and the 
evaluation of these models.
All these concepts of predictable assembly have been integrated 
together and demonstrated in the PACC Starter Kit (PSK) [9]. The 
PSK is  a development environment that includes the Construction 
and Composition Language (CCL) [10], a language to describe 
the interface and behavioral  specification of components and their 
assembly into systems. The runtime behavior of these systems 
specified in CCL can be predicted with the performance and 
model checking reasoning frameworks.  Furthermore, executable 
code targeting the included runtime environment (the Pin 
component technology [11] and a real-time extension for 
Windows) can be generated from the same specification, 
guaranteeing that  the code matches the specification. All the 
technologies integrated in this  model-driven approach allow 
making performance predictions throughout the development 
lifecycle, from the early stages in which only the component and 
connector view of the architecture and execution time estimates 
are available, to the point in which executable code can be 
generated from the behavioral  specification and measured. It even 
allows predicting the impact of changes during maintenance.
Although the architecture of the PSK allows the integration of 
third-party performance analysis tools via plug-ins [12], the 
integration of each  new tool  requires the development  of a new 
transformation to generate a performance model in an input 
format suitable for the tool. Even though this approach provides 
tight integration and allows exploiting specific features of the 
different tools, another promising option is  the tool 
interoperability approach using an interchange format [13]. This 
paper describes the use of the Software Performance Model 
Interchange Format (S-PMIF) [14, 15] to allow the analysis of 
real-time designs specified in CCL with  additional performance 
analysis tools.

2.2Software Performance Engineering
Software performance engineering (SPE) is a systematic, 
quantitative approach to constructing software systems that meet 
performance requirements. SPE prescribes principles for creating 
responsive software, the data required for evaluation, procedures 
for obtaining performance specifications, and guidelines for the 
types of evaluation to be conducted at each  development stage. It 
incorporates models for representing and predicting performance 
as well as a set of analysis methods [16]. 
SPE advocates three modeling strategies:

1. Simple-model strategy:  Start with the simplest possible 
model that identifies  problems with the system 
architecture, design, or implementation plans.

2. Best- and Worst-Case Strategy:  Use best- and worst-
case estimates of resource requirements  to establish 
bounds on expected performance and manage 
uncertainty in estimates.

3. Adapt-to-Precision Strategy:  Match the details 
represented in the models to the knowledge of the 
software processing details.

Simple models  are easily  constructed and solved to provide 
feedback on whether the proposed software is likely to meet 
performance requirements. As the software process proceeds, the 
models are refined to more closely represent the performance of 
the emerging software (adapt to precision strategy). If the 
predicted best-case performance is unsatisfactory, developers seek 
feasible alternatives. If the worst- case prediction is satisfactory, 
they proceed to the next step of the development process. If the 
results are somewhere in-between, analyses identify critical 
components and seek more precise data for them. A variety of 
techniques can provide more precision, including:  further refining 
the architecture and constructing more detailed models or 
constructing performance prototypes and measuring resource 
requirements for key components.
SPE·ED [17] is a tool designed specifically to support the SPE 
methods and models  defined in [16]. Using a small amount  of data 
about envisioned software processing, SPE·ED creates and solves 
performance models, and presents visual results. It provides 
performance data for requirements and design choices and 
facilitates comparison of software and hardware alternatives for 
solving performance problems.
SPE·ED supports  four types of solutions for the performance 
models: 

1. No contention – analytic solution with one user
2. Contention – analytic solution of multiple users of the 

same scenario, 
3. System model – simulation solution of all scenarios and 

users
4. Advanced model – analysis  of communication and 

coordination among scenarios and users.
 The simple model solution  (no contention) suffices for most 
performance analyses early in development. The data that is 
available at that time usually doesn’t provide the precision needed 
for the more detailed solutions. Later, the advanced system model 
solution  gives more insight into situations when mean values  may 
be fine, but queue lengths may build in some circumstances and 
lead to  unacceptable performance. The advanced system model 
executes the simulation and actually “makes  calls” to other 
processes at the point in the execution where special 
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synchronization nodes are placed. If the called process is busy, the 
calling process waits in a queue.
In SPE•ED, an advanced system execution model is automatically 
created and solved to quantify contention effects and delays.  

2.3Model Interchange
Model interchange seeks cooperation among existing tools that 
perform different tasks. XML-based interchange formats for 
models provide a mechanism whereby model information may be 
transferred among modeling and analysis tools. This makes it 
possible for a user to create a model in one tool, perform some 
studies, and then move the model to another tool for other studies 
that are better done in the second tool. 
The Software Performance Model Interchange Format (S-PMIF) 
[14] is  a common representation that can be used to  exchange 
information  between software design tools  and software 
performance engineering tools. With S-PMIF, a software tool can 
capture software architecture and design information along with 
some performance information and export  it to a software 
performance engineering tool for model elaboration and solution 
without the need for laborious manual translation from one tool’s 
representation to another, and without the need to validate the 
resulting specification. Use of the S-PMIF does not require tools 
to  know about each other’s  capabilities, internal data formats, or 
even existence. It requires  only that  the importing and exporting 
tools either support  the S-PMIF or provide an interface that  reads/
writes model specifications from/to a file.
S-PMIF enables the following SPE tasks:

1. Developers can prepare designs as usual and export the 
data to SPE tools where performance models can be 
constructed automatically.

2. The model transformation can be used to check that the 
resulting processing details are those intended by the 
software specification.

3. Data available to developers can be captured in the 
development tool – other data can be added by 
performance specialists in the SPE tool.

4. Rapid production of models makes data available for 
supporting design  decisions in a timely fashion. This  is 
good  for studying architecture and design tradeoffs 
before committing to code.

5. Developers can create and evaluate some SPE models 
without needing detailed knowledge of performance 
models.

The performance model interchange formats  specify the model 
and a set of parameters for one run. For model studies, however, it 
is  useful to be able to specify multiple runs, or experiments, for 
the model. In [18] an XML interchange schema extension, called 
Experiment Schema Extension (Ex-SE), defines a set  of model 
runs and the output desired from them. This extension to an 
interchange schema provides a means of specifying performance 
studies that is independent of a given tool paradigm. 
Thus, the model interchange approach  makes it possible to create 
a software specification in a development tool, then automatically 
export the model description and some specifications for 
conducting performance assessments, and obtain the results for 
use in considering architectural  and design alternatives. The 
advantages of this approach are: it  is relatively easy to accomplish 
with  existing tools; it requires minor extensions to tool functions 
(import and export) or creation of an external translator to convert 

file formats  to/from interchange formats; and it  enables the use of 
multiple tools so it is easy to compare results  and to use the tool 
best suited to the task.
Without  a shared  interchange format, two tools  would need to 
develop a custom import and export mechanism. A third tool 
would require a custom interface between each of those tools 
resulting in a 4· ( N! / (2!(N-2)!))  requirement for customized 
interfaces. With a shared interchange format, the requirement for 
customized interfaces is  reduced to 2·N. With XML tools the 
complexity and amount of effort to create the interface is quite 
small [19]. While XML is verbose, model  interchange is  a coarse-
grained interface. A file is  exported, sent to  another tool, it is 
imported and the model solved. So the performance impact of 
XML as the interface is insignificant compared to a fine-grained 
interface that exchanges each XML element as it is generated.

3.RELATED WORK
3.1Architecture Assessment
Kazman and co-workers  describe two related approaches to the 
evaluation of software architectures. The Software Architecture 
Analysis Method (SAAM) [20] uses scenarios to derive 
information about an architecture’s ability to meet certain quality 
requirements such as performance, reliability, or modifiability. 
The Architecture Tradeoff Analysis Method (ATAM) [21] extends 
SAAM to consider interactions among quality requirements and 
identify architectural  features that are sensitive to more than one 
quality attribute. Once these sensitivities have been identified, 
tradeoffs between quality requirements can be evaluated.
PASASM [22] is  a method for the performance assessment of 
software architectures. It uses the principles and techniques of 
SPE [16] to identify potential areas  of risk within the architecture 
with  respect to performance and quality objectives. If a problem is 
found, PASA also identifies strategies for reducing or eliminating 
those risks. PASA is similar to SAAM and ATAM in that it  is 
scenario-based. However, there are also important differences. In 
SAAM and ATAM, scenarios  are informal narratives of uses of 
the software. In PASA, performance scenarios are expressed 
formally using UML sequence or activity diagrams. ATAM and 
PASA differ in their approach to performance modeling. ATAM 
uses analytical models of certain architectural features while 
PASA uses more general software execution  and system execution 
models that may be solved analytically or via simulation [16]. 
Both SAAM and ATAM produce a list of problem areas or risks 
while PASA produces a quantitative estimate of the performance 
of the system as  implemented as well  as for proposed changes. 
Finally, ATAM is  also concerned with interactions between quality 
attributes and focuses on architectural features where tradeoffs 
may be required. While PASA’s primary focus is  on performance, 
quality attributes and tradeoffs  between them are considered as 
well.
Earlier approaches to architecture assessment (e.g., [23], [24] [25], 
[26], [27], and [28]) relied on directly connecting a particular 
design notation and a particular type of performance model. More 
recently, interchange formats have been used  to decouple the 
architecture description from the model description (see below).

3.2Model Interchange
Several model interchange formats for different types of models 
have been proposed. The Performance Model Interchange Format, 
PMIF, [13, 29] enables various tools to exchange queueing 
network model information. PMIF is based on a meta-model, 
which provides an  underlying formalism for the schema. The 
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meta-model for the Software Performance Model Interchange 
Format, S-PMIF, was defined and later extended in [15, 30]. It 
differs from the PMIF in that  it specifies software processing 
details and bridges the gap between software architecture and 
design tools  and performance analysis tools. Woodside et al. 
developed a meta-model, PUMA, that combines software and 
system models based on layered queueing networks (LQN) in 
[31]. D’Ambrogio also defines a MOF meta-model of LQNs and 
transfers UML models to LQNs in [32]. 
Other approaches have focused on transferring information 
between UML-based software design tools and software 
performance engineering tools, such as [14, 33-35]. Gu and Petriu 
[36] and Balsamo and Marzolla [24] use XML to  transfer design 
specifications into  a particular solver; however, they do  not 
attempt to develop a general  format for the interchange of 
performance models among different tools. Our work does not 
involve UML transformations so other topics such as SPT and 
MARTE are not addressed here.
This body of work demonstrates that model interoperability 
among a set of tools is viable. Common interchange formats such 
as PMIF, S-PMIF, and PUMA are preferable because they enable 
the use of a large number of tools without requiring custom 
interfaces for each one.

3.3Component-Based Approaches
Some work has addressed the performance analysis of 
component-based systems. Wu and Woodside use an XML 
Schema to describe the contents  and data types that a Component-
Based Modeling language (CBML) document may have [37]. 
CBML is an extended version of the Layered Queuing Network 
(LQN) language that adds the capability and flexibility to model 
software components and component-based systems.
Becker, et al., address components whose performance behavior 
depends on the context  in which they are used [38]. They address 
sources of variability such as loop iterations, branch conditions, 
and parametric resource demand, and then use simulation to 
predict performance in a particular usage context.

Grassi, et al., extend the KLAPER MOF meta-model to represent 
reconfigurable component-based systems in [39]. It is to be used 
in  autonomic systems and enable dynamic reconfiguration to meet 
QoS goals.
These approaches are performance-centric in that they create/
adapt a model of component based systems specifically for 
performance assessment. We prefer to work with generally 
accepted architecture representations, and use a common 
interchange format (S-PMIF) that  allows the use of a variety of 
performance modeling tools to provide performance predictions 
for architecture and  design alternatives. In addition, we have 
extended the S-PMIF to  include features necessary for evaluating 
real-time systems. In the future, it may be possible to  unify the 
various interchange formats as  suggested by [40]. In the 
meantime, it makes  sense to extend the meta-models as necessary 
to  create a superset of the necessary information for performance 
assessment. 

4.CCL AND ICM
The architecture specification language used in this study is the 
Construction and Composition Language (CCL) [10]. This section 
describes relevant features of CCL and ICM, a meta-model for 
facilitating the analysis of CCL specifications.

4.1Construction and Composition Language
CCL is a language for specifying the behavior of components, 
their composition to form assemblies or systems, and the 
properties required for reasoning about the assemblies [10]. CCL 
enforces the notion of pure composition, which means that all the 
behavior is inside the components and systems are assembled by 
wiring components together with no “glue” code. Components in 
CCL interact through pins. Source pins emit stimuli  and sink pins 
receive stimuli. When a sink pin receives a stimulus, it triggers a 
reaction, which carries out the response to the stimulus. A reaction 
can initiate an interaction  with other components via its source 
pins. Pins  can interact synchronously  or asynchronously. Stimuli 
can carry data, and for that reason, pins have signatures describing 
the data they consume and produce.
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The following CCL specification declares a component  type 
MovementPlanner with one asynchronous sink pin and three 
source pins (one synchronous and two asynchronous). Then it 
declares a reaction in which  all the pins participate, that is, it is 
triggered by go, the only sink pin, and it can interact with other 
components through the source pins. The keyword threaded 
indicates that this reaction executes in its own thread.
component MovementPlanner() {
    sink asynch go();
    source synch get(produce int mode, produce 
        string in, consume string out);
    source asynch moveX(produce int pos);
    source asynch moveY(produce int pos);

    threaded react reaction go, get, moveX, moveY)
    {

// reaction specification goes here
    }
}

It is important  to note that  a specification like this that does not 
have the behavioral  specification of the reaction is  a valid  CCL 
specification. Therefore, analysis can be done in the early stages 

of the design, when only the component and connector structure 
of the system is known.
An assembly of components is  produced by creating component 
instances and connecting them as in the following fragment.
    MovementPlanner movementPlanner();
    AxisController controllerX("X");

    movementPlanner:moveX ~> controllerX:move;

For the connection between two pins to be legal, they need to 
have the same mode (synchronous or asynchronous) and they 
need to have complementing signatures, meaning that the data 
produced by  one pin is  consumed by the other and vice versa. For 
example, the signature of the pin move in AxisController is as 
follows.
    sink asynch move(consume int pos);

Assemblies declare services (e.g., clocks, keyboard input, console 
output, etc.) that they expect  the environment to provide. The 
specification of a service is identical to that of a component, 
except that the keyword service is used instead. One important 
semantic difference though, is that services are the only source of 
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external events  because components cannot interact directly  with 
the environment.
CCL has an annotation  mechanism that  can be used  to provide 
information required to analyze the assembly. For example, the 
following annotation 1  indicates the minimum, average, and 
maximum execution time of the move pin in  AxisController when 
run in isolation (i.e., with no blocking and no preemption).
    annotate AxisController:move {"lambda*",
 const string execTime =  
            "G(9.95, 10.01, 10.14)" }

Only  the aspects of CCL most relevant  for this paper have been 
covered here. More details about CCL can be found in [10].

4.2ICM: A Meta-model for CCL Assemblies
The intermediate constructive model (ICM) is an intermediate 
representation of a CCL assembly that makes the generation of 
analysis models simpler. Instead of having to deal  with the 
language related constructs in the CCL abstract syntax tree while 
developing a transformation, it is easier to start from concepts that 
are more relevant to reason about  the assembly. For example, it is 
easier to reason about a source pin with an event interarrival 
distribution, than doing the same thinking in  terms of a 
computational unit, an annotation and a float literal expression.
The ICM meta-model, shown in Figure 1, does not have 
information regarding types and only represents instances. That is, 
if there are two instances of the same component type, elements 
common to both, such as  pins, are repeated in  the model. This 
redundancy also makes it  easier to traverse the design in order to 
transform it to  an  analysis model. The root  element  of the ICM 
meta-model is the AssemblyInstance, which contains all  the 
service and component instances in the assembly.  These have a 
common base class, ElementInstance, with all the attributes they 
share. Components and services have pins that can be either sink 
or source. SinkPinInstance has an execution time distribution to 
represent the amount of CPU time the sink pin requires. When a 
source pin belongs to  a service (i.e., it is a ServiceSourcePinIcm), 
it  has an event interarrival distribution and can optionally have an 
execution time distribution as well. Distributions  can be of 
different kinds, such as constant  or exponential. In order to 
represent the connections between components, there is a 
reference sinks between pins that shows which sink pins are 
connected to a source pin. In a similar way, the reactSources 
reference indicates the sources that  are triggered by a sink pin  in 
the same component.

5.S-PMIF 
The S-PMIF is based on the SPE meta-model. This meta-model 
defines the essential information required  to create the software 
and system performance models as defined in [16]. The SPE 
meta-model class diagram is  shown in Figure 2. The complete 
definition is available at www.spe-ed.com/pmif/s-pmif.xml 2

Several changes were made to the meta-model described in [30] 
as a result of this work. The first was the creation of the abstract 
entity Scenario with  subclasses PerformanceScenario and 
ServiceScenario. A PerformanceScenario represents an  end-to-
end, externally visible interaction (analogous to  a Use Case) while 
a ServiceScenario is a scenario that provides  one or more services 

to  one or more PerformanceScenarios. Performance Scenarios 
have workload intensities which may be specified by a number of 
users and think time (closed workload) or an inter-arrival  time 
(open workload). ServiceScenarios have an optional 
intearrivalTime (default is 0) and numberOfInstances.

Several attributes were also added to the meta-model to allow 
specification of real-time concepts:

• arr ivalDistr ibut ion (PerformanceScenario) and 
serviceDistribution (Device). These take their values from 
an enumerated type, DistributionType (exp, normal, 
constant, erlang, hyperexp, uniform(u1,u2)). These 
attributes are optional (default to exp).

• schedulingDiscipline (Device). This  attribute is also an 
enumerated type (FCFS, IS, LCFSPR, PR, PS, RR) and is 
optional.

• responseTimeRequirement and throughputRequirement 
(Scenario). The values of these attributes are real numbers.

I n  a d d i t i o n , t h e a t t r i b u t e s p a r t n e r N o d e I D a n d 
partnerScenarioName were added  to SendNode and attributes 
were removed from SynchronizationNode.
TheS-PMIF is implemented using three separate schemas: 
Topology, OverheadMatrix, and Device. They can be combined by 
including the appropriate schemas. Thus, Topology may include 
OverheadMatrix which includes  Device. This is useful because 
one may use any of the schemas without using the others. For 
example, if the overhead matrix specification is  coming from 
another source it  does not need to be included in the topology, and 
vice-versa.
Comparing this meta-model to the MARTE specification  is 
beyond the scope of this paper and will be addressed in future 
work.

6.IMPLEMENTATION
6.1Generating S-PMIF Models from CCL
Even though from the user’s  perspective the transformation to an 
S-PMIF model starts from a CCL specification, behind the scenes 
the CCL specification is  transformed first to an ICM model from 
which the S-PMIF is finally generated. 
The ICM meta-model is defined as an Ecore model, the meta-
model of the Eclipse Modeling Framework [41]. EMF can 
generate the Java implementation classes to load, manipulate and 
persist instances of the model. The S-PMIF format is specified as 
an XML schema, and since EMF provides the same generative 
capabilities starting with an XML schema, EMF was used to 
generate the Java implementation to manipulate the S-PMIF 
models.
The following sections describe the generation of two flavors of 
S-PMIF model from ICM, the simple model, or no contention 
model, and the advanced model.

6.2Generation of the Simple Model
The overall  approach to generate the simple model consists of 
creating an S-PMIF performance scenario  for each service source 
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pin in the ICM. In that way, the performance scenario 
encompasses the complete response to an external  event. The 
execution graph for the performance scenario is created by 
recursively traversing the response by visiting each pin, starting 
with  the service source pin. Figure 3 shows the pseudocode for the 
two functions  that implement  the core of the transformation. The 
function visitSource checks  whether the source pin is  synchronous 
or asynchronous. In the first case, it directly returns the node that 
is  created by visiting the sink connected to that source. However, 
if the source pin is asynchronous, it creates a SplitNode to 
represent the initiation of concurrent threads of execution, and 
adds to the split node the nodes resulting from visiting all  the sink 
pins  connected to the source node. The function visitSink creates a 
BasicNode with a ResourceRequirement  to model the computation 
carried out by the sink pin and then it visits in sequence all the 
source pins in the same component  that are triggered by the 
reaction of the sink pin. The order of execution is modeled by 
creating the arcs connecting the nodes.
One problem that  arose while implementing this algorithm was 
the lack of subtype relationships between the different kinds of 
nodes in the S-PMIF schema. In the S-PMIF meta-model, both 
BasicNode and SplitNode are subtypes of Node. However, in the 
XML schema for S-PMIF the hierarchy was flattened and those 
relationships were lost [14]. For that reason, in the Java 
implementation generated with EMF from the S-PMIF schema, 
Node, BasicNode, and SplitNode have no subtype relationship. 
This  complicates the implementation of the transformation 
algorithm. For instance, what  is the return type of visitSource if it 
can return either a BasicNode or a SplitNode?  The problem also 
hindered the use of polymorphism because it makes it impossible 
to  make calls such as lastNode.getNodeId(), where lastNode can 
refer to different types of nodes. Although the intent of flattening 
the S-PMIF schema was to simplify the XML [14], the lack of 
subtype relationships  proved to  have the opposite effect  in 
situations where the XML is generated by  a high level modeling 
technology such as EMF. 

The problem of not having node subtyping was overcome in two 
different ways. One solution was changing the return type of 
visitSource and visitSink to  ExpandedNode, and wrapping the 
result of each function in its own execution graph contained in an 
expanded node. This approached worked well albeit it  generated a 
lot of expanded nodes and execution graphs that  would otherwise 
not be needed. 
The second solution was  more complicated because it consisted of 
adding subtyping to the schema from which the Java 
implementation classes were generated while maintaining an 
output  format compliant with the original S-PMIF schema. The 
subtyping was added by using the schema type extension 
mechanism. In addition, containment  relationships  that were 
implemented with XSD choice were changed to use the base type. 
For example, the containment relationship  shown in  Figure 4 was 
changed as it appears in Figure 5. This change allowed EMF to 
generate Java code with the right subtype relationships. However, 
the generated XML for a BasicNode would look as follows.
  <Node xsi:type="BasicNode_type" NodeId="N1" … />

Since this  is not compatible with the S-PMIF schema, XSD 
substitution  groups were defined so that  the desired XML output 
was produced. A substitution group introduced to the schema with
<xs:element name="BasicNode"
  substitutionGroup="Node" type="BasicNode_type"/>

resulted in the right XML produced as in this example:
  <BasicNode NodeId="N1" … />

<xs:complexType name="EG_type">
  <xs:sequence>
    <xs:element maxOccurs="unbounded"
               name="Node" type="Node_type"/>
    ...
  </xs:sequence>
  ...

Figure 5. Containment with base type

6.3Generation of the Advanced Model
In a component-based real-time system, the response to an event 
may be realized by several components that may execute in their 
own thread. When creating the advanced S-PMIF model, the 
different concurrent threads of execution need to be modeled so 
that contention between them can be evaluated. 
S-PMIF has the concept of a SynchronizationNode that maps 
directly to the different kinds of pins  in CCL. Synchronous source 
and sink pins can be represented by SynchronousCall and Reply 
nodes respectively. Asynchronous source and sink  pins can be 
modeled by AsynchronousCal l and  NoReply nodes 
correspondingly. The pseudocode for the algorithm used to 
generate the advanced model is shown in Figure 6. The most 
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Node visitSource(SourcePinInstance source) {
  if source is synchronous {
    node = visitSink(sink)
  } else { // source is asynchronous
    node = new SplitNode
    for each sink in source.sinks {
      newNode = visitSink(sink)
      add newNode to children of node
    }
  }
  return node
}

Node visitSink(SinkPinInstance sink) {
  node = new BasicNode
  add ResourceRequirement to node from
        sink.execTimeDistribution
  lastNode = node
  for each source in sink.reactSources {
    newNode = visitSource(source)
    arc = new Arc
    arc.from = lastNode.getNodeId()
    arc.to = newNode.getNodeId()
    lastNode = newNode
  }

Figure 3. Pseudocode for simple S-PMIF model generation

<xs:complexType name="EG_type">
  <xs:sequence>
    <xs:choice maxOccurs="unbounded">
      <xs:element name="BasicNode"
                  type="BasicNode_type"/>
      <xs:element name="SplitNode"
                  type="CPSNode_type"/>
      ...
    </xs:choice>
  </xs:sequence>
  ...

Figure 4. Containment with schema choice



important function is  getPSForSink. This  function creates  a 
scenario for a sink pin in  the assembly only if it  has not created it 
before; otherwise, it returns the already existing scenario. The 
performance scenario starts  with either a BasicNode or 
SynchronizationNode depending on whether it  is  top level (i.e., 
first in the response to an event) or not. If it is  not top level, the 
type of the SynchronizationNode is set to match the interaction 
mode of the pin. This first node in the scenario has a 
ResourceRequirement specifying the execution time required by 
the sink pin in the CPU. If the component interacts with other 
components via its source pins, synchronization  nodes of type 
SynchronousCall or AsynchronousCall  are created to model the 
interactions with the connected sink pins. In order to get the 
partner scenario of these synchronization nodes, getPSForSink is 
called recursively. The main function of the transformation, 
generateModel, just calls getPSForSink for each of the sinks 
connected to service source pins in the assembly and sets the 
corresponding interarrival time for the top level performance 
scenarios.
The algorithm presented here depends on a simplifying 
assumption, namely, that all the sink pins in the assembly 
participate in threaded reactions. Nevertheless, it  would not be 
difficult to extend  it  to support unthreaded reactions as well 
because traversing unthreaded reactions would be the same as was 
done in  the simple model generation algorithm, except that in this 
case there would be no split nodes.

6.4Importing the Models 
The S-PMIF is imported into a software performance modeling 
tool, like SPE·ED [42, 43], SP[44], or HIT [45] for performance 
analysis of the software architecture and design, and evaluation of 
alternatives. The software performance modeling tool must either 
provide an import mechanism for S-PMIF or read input from a 
file that can be generated from a translation of the S-PMIF.

We use the SPE·ED tool. SPE·ED uses  the Document  Object Model 
(DOM) to import the s-pmif.xml. It first  loads and parses the 
document, then uses DOM calls to walk through each scenario 
and create the corresponding nodes and arcs in SPE·ED. Previous 
work created a prototype import  mechanism [30]. It included 
neither the import of resource requirements nor the overhead 
matrix so those features were added to  handle these models. This 
was the only extension required for the simple models. The 
following additional features were required for the real-time 
extensions used in the advanced models:

• ServiceScenarios are currently mapped to  performance 
scenarios. In the future, SPE·ED will  support 
ServiceScenarios, so this is a temporary solution.

• SPE·ED assumes arrival times and service times are 
exponentially distributed, the case study required 
constant interarrival and service times

• Preemptive-resume scheduling was required.
• Synchronization nodes were not supported in the earlier 

prototype

7.PROOF OF CONCEPT
In order to demonstrate the viability  of the performance model 
exchange approach, we selected a real-time application that was 
specified with CCL. The application is a simple robot controller 
that takes high-level  work orders for a robot and translates them to 
low-level movement commands for the robot’s two axes. Figure 7 
shows the design  of the controller. The solid  black boxes are 
sources of events, and in this case, they all have constant 

interarrival intervals. For clarity, the period of the event has been 
included in the name of the service (e.g., clock130 has a period of 
130ms). Components  are depicted as hollow boxes in the diagram, 
with  sink pins  on the left, and source pins on the right. Single and 
double arrow pins indicate synchronous and asynchronous 
interaction respectively. 
The trajectory planner periodically receives high-level orders for 
the robot and, using information it  gets  from the position monitor, 
decomposes them into subwork orders, which it then puts in the 
work order repository. The movement  planner gets orders from 
the repository and translates them into movement  commands for 
the axis-controllers controllerX  and controllerY. The position 
monitor receives input from a sensor that is  read periodically, and 
the monitor component performs low-priority monitoring tasks. 
It is critical that the movement planner never finds the repository 
empty because if it  does, it has to abort the operation of the robot. 

Both planners cannot miss their deadline at the end of their period. 
Therefore, this is a hard real-time situation. All  the sink pins in 
this design execute on their own thread at different priorities.
The simple model consists of four performance scenarios. Figure 
8 shows the generated S-PMIF for one of them.
The advanced system model has nine scenarios. Figure 9 shows 
the S-PMIF for the same scenario in the advanced model.
Figure 10 shows the imported models. On the left is a portion of 
the simple model corresponding to  the execution graph for the 
expanded node, E_trajectoryPlanner.go. Its “no contention” 
solution  is shown. On the right is the generated advanced model 
consisting of the N_trajectoryPlanner.go basic node followed by 
two synchronous call nodes.
In order to have a baseline for comparing the results, the 
controller was analyzed using the worst-case latency prediction 
capability provided by the PSK performance-reasoning 
framework. This analysis first transforms the design specification 
into  a performance model  in  which the response to each external 
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Figure 6. Pseudocode for advanced S-PMIF model generation

Figure 7. Robot controller 
design

Figure 8. S-PMIF for clock450.tick Simple Model
generateModel() {
  for each serviceSourcePin in assembly {
    linkedSink = 
           sink connected to serviceSourcePin
    ps = getPSForSink(linkedSink, true)
    ps.interarrivalTime = 
      serviceSourcePin.eventDistribution.mean
  }
}

PS getPSForSink(SinkPinInstance sink,
                bool topLevel) {
  if PS already created for sink {
    return psMap[sink]
  }
  ps = new PS
  ps.priority = sink.priority
  if topLevel {
    node = new BasicNode
  } else {
    node = new SynchronizationNode
    if sink is synchronous {
      node.myType = Reply
    } else {
      node.myType = NoReply
    }
  }
  add ResourceRequirement to node from
        sink.execTimeDistribution
  make node first node in ps
  lastNode = node
  for each source reacting to sink {
    for each linkedSync connected to source {
      node = new SynchronizationNode
      if sink is synchronous {
        node.myType = SynchronousCall
      } else {
        node.myType = AsynchronousCall
      }
      node.partnerPerfScenario =
            getPSForSink(linkedSink, false)
      arc = new Arc
      arc.from = lastNode.getNodeId()
      arc.to = node.getNodeId()
      lastNode = node
    }
  }

<PerformanceScenario EGId="clock450.tick" 
InterarrivalTime="450.0" NumberOfJobs="1" 
Priority="1" ScenarioName="clock450.tick" 
SWmodelfilename="icm">
  <ExecutionGraph EGId="clock450.tick" 
EGname="clock450.tick" IsMainEG="true" 
StartNode="S_clock450.tick">
    <SplitNode NodeId="S_clock450.tick" 
NodeName="S_clock450.tick">
      <ExpandedNode 
NodeId="X_trajectoryPlanner.go" 
NodeName="X_trajectoryPlanner.go" 
Probability="1.0" EGId="E_trajectoryPlanner.go" 
EGname="E_trajectoryPlanner.go"/>
    </SplitNode>
  </ExecutionGraph>
  <ExecutionGraph EGId="E_trajectoryPlanner.go" 
EGname="E_trajectoryPlanner.go" 
IsMainEG="false" 
StartNode="N_trajectoryPlanner.go">
    <BasicNode NodeId="N_trajectoryPlanner.go" 
NodeName="N_trajectoryPlanner.go" 
Probability="1.0">
      <ResourceRequirement ResourceId="R_CPU" 
UnitsOfService="89.66507"/>
    </BasicNode>
    <BasicNode NodeId="N_positionMonitor.read" 
NodeName="N_positionMonitor.read" 
Probability="1.0">
      <ResourceRequirement ResourceId="R_CPU" 
UnitsOfService="3.0634942"/>
    </BasicNode>
    <BasicNode NodeId="N_repository.access" 
NodeName="N_repository.access" 
Probability="1.0">
      <ResourceRequirement ResourceId="R_CPU" 
UnitsOfService="19.920586"/>
    </BasicNode>
    <Arc FromNode="N_trajectoryPlanner.go" 
ToNode="N_positionMonitor.read"/>
    <Arc FromNode="N_positionMonitor.read" 
ToNode="N_repository.access"/>
  </ExecutionGraph>
</PerformanceScenario>



event is expressed as a linear sequence of actions, even if the 
original response presents branching and internal concurrency. 
The resulting performance model is then analyzed using the 
technique for varying priorities in Rate Monotonic Analysis 
(RMA) [46]. This analysis is carried out by MAST [12], a third-
party tool integrated with the PSK’s performance reasoning 
framework. For each response being analyzed, RMA creates the 
worst phasing of tasks in order to compute an upper bound for the 
worst-case latency or response time. Therefore, it is  expected that 
results obtained by other means be no higher than those provided 
by RMA.

Table 1 shows the performance results. The first two sections are 
the results  from the RMA analysis and a discrete event simulation 
integrated in the PSK. The third section shows the SPE·ED results. 
The best case is the analytic solution of the SPE·ED simple model. 
The average and worst cases are the simulation  solution of the 
SPE·ED advanced system model. As expected, the analytic best 
case for both RMA and SPE·ED are exact. The simulation 
solutions are also comparable, but not  exact. This is  especially 
noticeable in the best case because the discrete event simulation 
best case does include contention. For example, even in the best 
case, the response to clock450.tick will be preempted twice by 
clock150.tick, resulting in a response time higher than the no-
contention best case.
The next  step is to evaluate an alternative architecture that 
replaces the X and Y controllers with controllers that also  provide 
position  feedback to the position monitor. This changes the 
scenario for clock150.tick in the simple model to make two 
additional calls. It changes the ControllerX and ControllerY 
threads in the advanced model  to  make asynchronous calls to the 
PositionMonitor.input. Table 2  shows the results for this 
architectural alternative.
As before, the best case analytic results are exact. However, these 
results show some differences in  the simulation solutions for the 
advanced model. In particular, SPE·ED models  have higher worst 
case times  for the clock130.tick and clock150.tick scenarios than 
RMA analytic results, which should never happen. This is because 
SPE·ED computes the average time for all calls to the 
positionMonitor.input thread. RMA, however, distinguishes 
between the calls from the different clocks. For example, 
positionMonitor.input participates in the responses to clock130 

and clock150. The problem is that it will have different response 
times for each of the clocks. For instance, when participating in 
clock130, positionMonitor.input could be preempted by an arrival 
from clock150. That preemption  would last for approximately 
6 5 m s . H o w e v e r, w h e n p a r t i c i p a t i n g i n c l o c k 1 5 0 , 
positionMonitor.input obviously  would never be preempted by an 
arrival from clock150. It is possible to compute more precise 
results manually from SPE·ED output.
This proof of concept demonstrates  the viability of the model 
interchange approach for the performance assessment of real-time 
system architectures. It is  helpful to compare the solutions from 
different software performance modeling tools. 
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Figure 9. S-PMIF for clock450.tick Advanced Model
Table 1. Robot Controller Results
Transaction Best Average Worst

RMA Analytic   

clock130.tick 15.04  98.04

clock450.tick 112.65  262.77

clock150.tick 60.02  79.94

clock2000.tick 0.32  278.14
DE Simulation   

clock130.tick 15.04 33.71 75.08

clock450.tick 247.73 259.49 262.83

clock150.tick 60.02 60.00 60.04

clock2000.tick 0.32 103.08 278.20
SPE·ED Results   

clock130.tick 15.04 33.78 99.07

clock450.tick 112.65 259.67 262.77

clock150.tick 60.02 60.02 60.02

clock2000.tick 0.32 71.61 278.14

Table 2. Results for Architectural Alternative
Transaction Best Average Worst
RMA Analytic
clock130.tick 15.04 124.06

clock450.tick 112.65 496.91

clock150.tick 86.03 109.02

clock2000.tick 0.32 431.24

DE Simulation
clock130.tick 15.04 52.18 115.99

clock450.tick 314.80 347.63 431.04

clock150.tick 86.03 89.57 105.99

clock2000.tick 16.19 220.18 431.36

SPE·ED Results
clock130.tick 15.04 46.51 208.16

clock450.tick 112.65 305.60 317.88

clock150.tick 86.03 90.08 192.65

clock2000.tick 0.32 128.68 413.30

 
Figure 10. Imported Clock450.tick Simple and Advanced Model

<PerformanceScenario 
EGId="trajectoryPlanner.go" 
InterarrivalTime="450.0" Priority="4" 
ScenarioName="trajectoryPlanner.go" 
SWmodelfilename="icm">
  <ExecutionGraph EGId="trajectoryPlanner.go" 
EGname="trajectoryPlanner.go" IsMainEG="true" 
StartNode="N_trajectoryPlanner.go">
    <BasicNode NodeId="N_trajectoryPlanner.go" 
NodeName="N_trajectoryPlanner.go">
      <ResourceRequirement ResourceId="R_CPU" 
UnitsOfService="89.66507"/>
    </BasicNode>
    <SynchronizationNode 
NodeId="N_trajectoryPlanner.read" 
NodeName="N_trajectoryPlanner.read" 
myType="SynchronousCall" 
partnerID="N_positionMonitor.read" 
partnerPerfScenarioName="positionMonitor.read"/
>
    <SynchronizationNode 
NodeId="N_trajectoryPlanner.put" 
NodeName="N_trajectoryPlanner.put" 
myType="SynchronousCall" 
partnerID="N_repository.access" 
partnerPerfScenarioName="repository.access"/>
    <Arc FromNode="N_trajectoryPlanner.go" 
ToNode="N_trajectoryPlanner.read"/>
    <Arc FromNode="N_trajectoryPlanner.read" 
ToNode="N_trajectoryPlanner.put"/>
  </ExecutionGraph>



8.CONCLUSIONS
This paper has illustrated the use of a model interchange format to 
support the performance analysis of real-time systems. It builds on 
previous work in the areas of component-based  systems, software 
pe r fo rmance eng inee r ing , and mode l i n t e rchange . 
Transformations between the Construction  and Composition 
Language and the Software Performance Model Interchange 
Format (S-PMIF) were defined for both simple and advanced 
models. A case study illustrates the process and compares model 
solutions obtained using the SPE·ED software performance 
engineering tool with those obtained using rate-monotonic 
analysis and discrete event simulation.
In defining the model transformation, we identified changes to the 
S-PMIF that were needed for analyzing a real-time design. We 
also found that preserving the type hierarchy of the S-PMIF meta-
model in the schema would facilitate the implementation of S-
PMIF interchange support  by tools using strongly typed modeling 
technologies to generate the XML such as EMF or some model 
transformation languages.
This work has opened a door to allow the performance analysis  of 
CCL specifications with other analysis tools without the need for 
additional integration effort. This means that  standard SPE models 
can easily be used for analysis of systems specified in CCL.
Finally, this paper has demonstrated  the ease with which the S-
PMIF can  be employed to transform additional design notations 
(other than UML) into software performance models.
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