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1. Introduction

Performance is a quality attribute that, in spite of being critical to a large number of software systems, is often
not appropriately addressed. As a result, many software-based systems fail to meet their performance requirements as
implemented. Fixing performance problems often causes cost and schedule overruns and, in some cases, the software cannot
be fixed and must be abandoned.

Performance cannot be retrofitted; it must be designed into software from the beginning. Our experience is that
performance problems are most often due to inappropriate architectural choices rather than inefficient coding. By the time
the architecture is fixed, it may be too late to achieve adequate performance by tuning. Thus, it is important to be able to
assess the impact of architectural decisions on quality requirements such as performance and reliability at the time that
they are made.

Although sound performance analysis theories and techniques exist, they are not widely used because they are difficult to
understand and require heavy modeling effort throughout the development process [1]. Consequently, software engineers
usually resort to testing to determine whether the performance requirements have been satisfied. To ensure that these
theories and techniques are used, they must be made more accessible—integrated into the software development process
and supported with tools.

An earlier version of this paper illustrated an approach to making performance analysis more accessible [2]. It made
several contributions:
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Fig. 1. Overview of tools, models and meta-models.

e Demonstrated the use of standard performance modeling techniques for component-based real-time systems

e [llustrated the use of the Software Performance Model Interchange Format (S-PMIF) with the Construction and
Composition Language (CCL)

e Merged streams of research that have thus far been independent: predictable assembly of components, software
performance engineering, and model interchange.
This paper enhances the earlier work with:

[ ]

An extended S-PMIF 2.0 meta-model, suitable for implementation with Ecore [3], that enables an automated model-to-
model transformation (M2M) from design models to performance models.

An additional implementation using the Atlas Transformation Language (ATL) [4] to transform an intermediate
constructive model (ICM) to S-PMIF.

e An updated proof of concept to support the new S-PMIF 2.0.

Additional related work including a discussion of the modeling power of S-PMIF compared to MARTE.

e Conclusions about the viability of M2M for design and performance model interchange.

The next section provides some background on the merged streams of research, and then Section 3 discusses related work
in these areas. Section 4 provides an overview of the Construction and Composition Language (CCL) and the ICM meta-model
for CCL assemblies. Next, Section 5 presents the revised S-PMIF 2.0 meta-model for real-time systems and the adaptations
to be definable in Ecore. Section 6 describes the implementation of the interoperability features. Section 7 presents a case

study as proof of concept and Section 8 offers some conclusions. Fig. 1 provides an overview of relationships between the
tools, models and meta-models described in the paper.

2. Background

As noted above, this work merges several distinct streams of research. This section describes these streams and provides
an overview of their merger.

Please cite this article in press as: G.A. Moreno, C.U. Smith, Performance analysis of real-time component architectures: An enhanced model interchange
approach, Performance Evaluation (2009), doi:10.1016/j.peva.2009.07.008




G.A. Moreno, C.U. Smith / Performance Evaluation I (1NEN) IEE-RER 3
2.1. Predictable assembly

The research on predictable assembly focuses on the development of technologies and methods to enable the
development of software with predictable runtime behavior [5-7]. The PACC initiative at the Software Engineering Institute
proposes the use of smart constraints to achieve predictability by construction [8]. The idea behind this concept is that
analysis theories rely on certain assumptions in order to be applicable, which means that the behavior of a software system
is predictable by a given theory only if it satisfies its assumptions. Smart constraints can guarantee the satisfaction of these
assumptions so that if a software system can be constructed under these constraints, then its behavior can be predicted.
Smart constraints can be enforced by different means, from automated checks at the architecture description level or design
specification, to imposition through component containers [9,10].

Evaluation is as important as smart constraints in order to achieve predictability by construction. Since the complexity of
performance evaluation and the effort required for creating the performance models has been cited as one of the root causes
of software performance failures, it is critical to automate them to provide a solution to this recurring problem. One way of
doing so is by using reasoning frameworks [11]. A reasoning framework encapsulates an analysis theory, the generation of
theory specific models from the architecture or design specification, and the evaluation of these models.

All these concepts of predictable assembly have been integrated together and demonstrated in the PACC Starter Kit
(PSK) [12]. The PSK is a development environment that includes the Construction and Composition Language (CCL) [13],
a language to describe the interface and behavioral specification of components and their assembly into systems. The
runtime behavior of these systems specified in CCL can be predicted with the performance and model checking reasoning
frameworks. Furthermore, executable code targeting the included runtime environment (the Pin component technology [ 14]
and a real-time extension for Windows) can be generated from the same specification, guaranteeing that the code matches
the specification. All the technologies integrated in this model-driven approach allow making performance predictions
throughout the development lifecycle, from the early stages in which only the component and connector view of the
architecture and execution time estimates are available, to the point in which executable code can be generated from the
behavioral specification and measured. It even allows predicting the impact of changes during maintenance.

Although the architecture of the PSK allows the integration of third-party performance analysis tools via plug-ins [ 15], the
integration of each new tool requires the development of a new transformation to generate a performance model in an input
format suitable for the tool. Even though this approach provides tight integration and allows exploiting specific features of
the different tools, another promising option is the tool interoperability approach using an interchange format [16]. This
paper describes the use of the Software Performance Model Interchange Format (S-PMIF) [17,18] to allow the analysis of
real-time designs specified in CCL with additional performance analysis tools. Section 3.2 discusses the factors that led to
our selection of S-PMIF as the model interchange format.

2.2. Software performance engineering

Software performance engineering (SPE) is a systematic, quantitative approach to constructing software systems that
meet performance requirements. SPE prescribes principles for creating responsive software, the data required for evaluation,
procedures for obtaining performance specifications, and guidelines for the types of evaluation to be conducted at each
development stage. It incorporates models for representing and predicting performance, as well as a set of analysis
methods [19].

SPE advocates three modeling strategies:

1. Simple-model strategy: Start with the simplest possible model that identifies problems with the system architecture,
design, or implementation plans.

2. Best- and Worst-Case Strategy: Use best- and worst-case estimates of resource requirements to establish bounds on
expected performance and manage uncertainty in estimates.

3. Adapt-to-Precision Strategy: Match the details represented in the models to the knowledge of the software processing
details.

Simple models are easily constructed and solved to provide feedback on whether the proposed software is likely to
meet performance requirements. As the software process proceeds, the models are refined to more closely represent the
performance of the emerging software (adapt to precision strategy). If the predicted best-case performance is unsatisfactory,
developers seek feasible alternatives. If the worst-case prediction is satisfactory, they proceed to the next step of the
development process. If the results are somewhere in-between, analyses identify critical components and seek more
precise data for them. A variety of techniques can provide more precision, including: further refining the architecture and
constructing more detailed models or constructing performance prototypes and measuring resource requirements for key
components.

SPE calls for software performance models that specify software processing steps (basic, case, repetition, synchronization,
etc.), software resource requirements for each, and computer resource requirements for each software resource. Software
models are mapped onto system performance models that represent computer resources and (computed) demands for
software scenarios. An advanced model evaluates software communication and synchronization and its impact on system
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performance. Software models are graph models; system models are queueing network models (QNM); and advanced
models may be either simulation models or approximated with layered queueing networks (LQN).

SPE- ED [20] is a tool designed specifically to support the SPE methods and models defined in [19]. Using a small amount
of data about envisioned software processing, SPE- ED creates and solves performance models, and presents visual results.
It provides performance data for requirements and design choices, and facilitates comparison of software and hardware
alternatives for solving performance problems.

SPE- ED supports four types of solutions for the performance models:

. No contention - analytic solution with one user,

. Contention - analytic solution of multiple users of the same scenario,

. System model - simulation solution of all scenarios and users,

. Advanced model - analysis of communication and coordination among scenarios and users.

AW N =

No contention solves the software model only. The Contention solution is an analytic solution of a portion of the system
model whereas the System model solution is a simulation solution of the complete system model.

The simple model solution (no contention) suffices for most performance analyses early in development. The data that
is available at that time usually does not provide the precision needed for the more detailed solutions. Later, the advanced
system model solution gives more insight into situations when mean values may be fine, but queue lengths may build
in some circumstances and lead to unacceptable performance. The advanced system model executes the simulation and
actually “makes calls” to other processes at the point in the execution where special synchronization nodes are placed. If
the called process is busy, the calling process waits in a queue.

In SPE- ED, the user can automatically create an advanced system execution model when s/he needs to quantify synchro-
nization effects and delays.

2.3. Model interchange

Model interchange seeks cooperation among existing tools that perform different tasks. XML-based interchange formats
for models provide a mechanism whereby model information may be transferred among modeling and analysis tools. This
makes it possible for a user to create a model in one tool, perform some studies, and then move the model to another tool
for other studies that are better done in the second tool.

The Software Performance Model Interchange Format (S-PMIF) [17,18] was the first common representation for
exchanging information between software design tools and software performance engineering tools. With S-PMIF, a
software tool can capture software architecture and design information along with some performance information and
export it to a software performance engineering tool for model elaboration and solution without the need for laborious
manual translation from one tool’s representation to another, and without the need to validate the resulting specification.
Use of the S-PMIF does not require tools to know about each other’s capabilities, internal data formats, or even existence.
It requires only that the importing and exporting tools either support the S-PMIF or provide an interface that reads/writes
model specifications from/to a file.

S-PMIF enables the following SPE tasks:

1. Developers can prepare designs as usual, and export the data to SPE tools where performance models can be constructed
automatically.

2. The model transformation can be used to check that the resulting processing details are those intended by the software
specification.

3. Data available to developers can be captured in the development tool - other data can be added by performance
specialists in the SPE tool.

4. Rapid production of models makes data available for supporting design decisions in a timely fashion. This is good for
studying architecture and design trade-offs before committing to code.

5. Developers can create and evaluate some SPE models without needing detailed knowledge of performance models.

The performance model interchange formats specify the model and a set of parameters for one run. For model studies,
however, it is useful to be able to specify multiple runs, or experiments, for the model. In [21] an XML interchange schema
extension, called Experiment Schema Extension (Ex-SE), defines a set of model runs and the output desired from them. This
extension to an interchange schema provides a means of specifying performance studies that is independent of a given tool
paradigm.

Thus, the model interchange approach makes it possible to create a software specification in a development tool, then
automatically export the model description and some specifications for conducting performance assessments, and obtain
the results for use in considering architectural and design alternatives. The advantages of this approach are: it is relatively
easy to accomplish with existing tools; it requires minor extensions to tool functions (import and export) or creation of an
external translator to convert file formats to/from interchange formats; and it enables the use of multiple tools so it is easy
to compare results and to use the tool best suited to the task.

Without a shared interchange format, two tools would need to develop a custom import and export mechanism.
Additional tools would require a custom interface to every other tool, resultingina N - (N — 1) requirement for customized
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interfaces. With a shared interchange format, the requirement for customized interfaces is reduced to 2 - N. With XML tools,
the complexity and amount of effort to create the interface is quite small [22]. While XML is verbose, model interchange is
a coarse-grained interface. A file is exported, sent to another tool, it is imported and the model solved. So the performance
impact of using XML as the interface is insignificant compared to a fine-grained interface that exchanges each XML element
as it is generated.

Importing and exporting models fits very well within the context of Model Driven Engineering (MDE) [23,24], an
approach to software development based on models and transformations between them. Model Driven Architecture (MDA)
is the Object Management Group’s (OMG) approach to MDE. MDA enables the development of a Platform-Independent
Model (PIM) of the application’s business functionality and behavior, transforms it through one or more Platform-Specific
Models (PSMs), and produces generated code and a deployable application. The PIM remains stable as technology evolves,
thus portability and interoperability are built into the architecture. These models have to conform to meta-models. The
Meta-Object Facility (MOF) [25] is a standard meta-meta-model that allows defining meta-models in terms of object-
oriented concepts such as classes, inheritance and associations. Although MDA focuses on the generation of software
implementations from models, the same technologies can be used for other purposes, such as transforming a design model
into a performance model for analysis.

Model transformation tools based on MOF or other modeling frameworks such as the Eclipse Modeling Framework
(EMF) [3] may be used to automate M2M transformations, thus eliminating the need for custom coding of many of the
import and export functions for tools that support a MOF compliant interface. This further reduces the requirement for
customized interfaces from 2 - N per tool to 2 - N per meta-model when M2M transformations are viable.

Simple M2M transformations are not always viable. For example, transformation from S-PMIF to PMIF requires an
algorithmic solution of a software execution model to derive the model parameters for a system execution model that
would be represented by PMIF. The reverse transformation, however, is structural in nature and does not require solving
the system execution model, so a M2M transformation is viable.

The Modeling and Analysis of Real-Time Embedded systems (MARTE) is OMG’s UML profile that supports specification,
design, verification/validation, and analysis of Real-time and Embedded Systems (RTES) [26]. It is a replacement for the UML
Profile for Schedulability, Performance and Time (SPT). MARTE defines core concepts for a model-based description of an
RTES design that support existing performance and schedulability analysis techniques with a tool interoperability approach.
It has a rich set of elements for specifying RTES behavior including:

e Clock management and timing requirements for start and stop conditions, miss ratios, maximum jitter, etc.

e Resource specifications for storage and energy consumption.

e Communication constraints such as shared data, messages, queue sizes, and communication overhead.

e Mutual exclusion and event notification, conditions for activation and termination.

e Additional types of distributions of random variables including Bernoulli, Binomial, Gamma, Geometric, and Histogram.

Some of these elements can be mapped onto S-PMIF synchronization nodes, such as mutual exclusion, event notification,
and communication constraints. Communication overhead can be handled with S-PMIF computer resource requirements.
Many other elements exceed the analysis capabilities of the queueing network paradigm covered by S-PMIF, such as energy
consumption, storage requirements, and clock management. So, S-PMIF is not a complete solution for the analysis of MARTE-
specified RTES, but it does support many important performance and schedulability architectural assessments.

3. Related work
3.1. Architecture assessment

Kazman and co-workers describe two related approaches to the evaluation of software architectures. The Software
Architecture Analysis Method (SAAM) [27] uses scenarios to derive information about an architecture’s ability to meet
certain quality requirements such as performance, reliability, or modifiability. The Architecture Tradeoff Analysis Method
(ATAM) [28] extends SAAM to consider interactions among quality requirements, and identify architectural features that
are sensitive to more than one quality attribute. Once these sensitivities have been identified, trade-offs between quality
requirements can be evaluated.

PASASM [29] is a method for the performance assessment of software architectures. It uses the principles and techniques
of SPE [19] to identify potential areas of risk within the architecture with respect to performance and quality requirements.
If a problem is found, PASA also identifies strategies for reducing or eliminating those risks. PASA is similar to SAAM and
ATAM in that it is scenario-based. However, there are also important differences. In SAAM and ATAM, scenarios are informal
narratives of uses of the software. In PASA, performance scenarios are expressed formally using UML sequence or activity
diagrams. ATAM and PASA differ in their approach to performance modeling. ATAM uses analytical models of certain archi-
tectural features while PASA uses more general software execution and system execution models that may be solved analyti-
cally or via simulation [ 19]. Both SAAM and ATAM produce a list of problem areas or risks while PASA produces a quantitative
estimate of the performance of the system as implemented, as well as for proposed changes. Finally, ATAM is also concerned
with interactions between quality attributes and focuses on architectural features where trade-offs may be required. While
PASA’s primary focus is on performance, quality attributes and trade-offs between them are considered as well.
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Earlier approaches to architecture assessment (e.g., [30-34], and [35]) relied on directly connecting a particular design
notation and a particular type of performance model. More recently, interchange formats have been used to decouple the
architecture description from the model description (see below).

3.2. Model interchange

Several model interchange formats for different types of models have been proposed. The Performance Model
Interchange Format, PMIF, [ 16,36] enables various tools to exchange queueing network model information. PMIF is based
on a meta-model, which provides an underlying formalism for the schema. The meta-model for the Software Performance
Model Interchange Format, S-PMIF, was first defined [18] and later extended [37]. It differs from the PMIF in that it
specifies software processing details and bridges the gap between software architecture and design tools and performance
analysis tools. Woodside et al. later developed the Core Scenario Model (CSM) that combines software and system models
based on LQN in [38]. D’Ambrogio also defines a MOF meta-model of LQNs and transfers UML models to LQNs in [39].
Grassi et al. subsequently developed a meta-model, KLAPER [40,41], that is similar to CSM in its LQN approach, but has
a different point of view on the important primitives (and supports reliability analysis using SHARPE). All of these meta-
models are tailored to LQN (the advanced model in the SPE approach). So, for example, they are best suited to determining
if performance requirements are met, analyzing capacity requirements, and changing the assignments of components
to computer resources. If performance problems are found, they give limited insight into how component(s) could be
redesigned to meet requirements. They go directly from a software design to an advanced model, so the ability to discover
and correct problems with simpler graph-based models is not supported. For example, if performance requirements for an
RTES design cannot be met with one user, there is no need to solve a contention model with hundreds of users. Furthermore,
the software design model provides insight into the design problems, whereas the LQN model primarily provides system-
level feedback. This is the primary reason our work uses S-PMIF for the model interchange format. Note that it is possible to
transform S-PMIF into CSM or KLAPER so we do not sacrifice modeling power with this choice.

Other approaches have focused on transferring information between UML-based software design tools and software
performance engineering tools, such as [42-44,17]. Gu and Petriu [45] and Balsamo and Marzolla [31] use XML to transfer
design specifications into a particular solver; however, they do not attempt to develop a general format for the interchange
of performance models among different tools.

Recent work has investigated M2M approaches for performance model interoperability. Cortellessa et al. examine ATL
as an alternative to custom Java code for transforming UML software models into PMIF queueing network models [46]. One
of the difficulties they note is traceability and reversibility from the queueing network model back to the design model, to
uniquely and automatically identify the critical element in the software model that caused performance problems. Our work
uses the S-PMIF software performance model interchange format, which explicitly represents the software processing steps
so the critical elements can be easily identified. Becker examines M2M transformations from PIM design models into PSM
realizations of the design, and incorporates performance-determining implementation choices into performance models
by using Coupled Transformations [47]. His results show improved precision in performance predictions (over methods
that do not specify resource requirements of implementation choices) with the use of his M2M approach. Gherbi and
Khendek use ATL to transform an Ecore subset of UML/SPT models (representing only the SAProfile Package) into an analysis
model conforming to their specific Ecore Schedulability Analysis Meta-model [48]. They illustrate the transformation with a
simple real-time system proof of concept. Their work establishes the viability of using M2M for transforming design models
into analysis models; but the result is a customized transformation to one specific analysis tool rather than a common
interchange format that would work with multiple tools. They also note that the analysis result is whether or not the tasks are
schedulable but, if not, there is no indication of the software design problem, because of the lack of connection of quantitative
results back to the design model.

This body of work demonstrates that model interoperability among a set of tools is viable. Common interchange formats
such as PMIF, S-PMIF, and CSM are preferable because they enable the use of a large number of tools without requiring
custom interfaces for each one.

3.3. Component-based approaches

Some work has addressed the performance analysis of component-based systems. Wu and Woodside use an XML Schema
to describe the contents and data types that a Component-Based Modeling language (CBML) document may have [49].
CBML is an extended version of the Layered Queuing Network (LQN) language that adds the capability and flexibility to
model software components and component-based systems. Becker et al. address components whose performance behavior
depends on the context in which they are used [50]. They address sources of variability such as loop iterations, branch
conditions, and parametric resource demand, and then use simulation to predict performance in a particular usage context.
Grassi et al. extend the KLAPER MOF meta-model to represent reconfigurable component-based systems in [51]. It is to be
used in autonomic systems and enable dynamic reconfiguration to meet QoS goals.

These approaches are performance-centric in that they create/adapt a model of component based systems specifically
for performance assessment. We prefer to work with generally accepted architecture representations, and use a common
interchange format (S-PMIF) that allows the use of a variety of performance modeling tools to provide performance
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predictions for architecture and design alternatives. In addition, we have extended the S-PMIF to include features necessary
for evaluating real-time systems. In the future, it may be possible to unify the various interchange formats, as suggested
by [52]. In the meantime, it makes sense to extend the meta-models as necessary to create a superset of the necessary
information for performance assessment.

4. CCL and ICM

The architecture specification language used in this study is the Construction and Composition Language (CCL) [13]. This
section describes relevant features of CCL and ICM, a meta-model for facilitating the analysis of CCL specifications.

4.1. Construction and composition language

CCL is a language for specifying the behavior of components, their composition to form assemblies or systems, and the
properties required for reasoning about the assemblies [13]. CCL enforces the notion of pure composition, which means that
all the behavior is inside the components, and systems are assembled by wiring components together with no “glue” code.
Components in CCL interact through pins. Source pins emit stimuli and sink pins receive stimuli. When a sink pin receives
a stimulus, it triggers a reaction, which carries out the response to the stimulus. A reaction can initiate an interaction with
other components via its source pins. Pins can interact synchronously or asynchronously. Stimuli can carry data and, for that
reason, pins have signatures describing the data they consume and produce.

The following CCL specification declares a component type MovementPlanner with one asynchronous sink pin and three
source pins (one synchronous and two asynchronous). Then it declares a reaction in which all the pins participate, that is,
it is triggered by go, the only sink pin, and it can interact with other components through the source pins. The keyword
threaded indicates that this reaction executes in its own thread.

component MovementPlanner() {
sink asynch go();
source synch get(produce int mode, produce string in, consume string out);
source asynch moveX(produce int pos);
source asynch moveY(produce int pos);
threaded react reaction go, get, moveX, moveY)
{
// reaction specification goes here
}
}

It is important to note that a specification like this, that does not have the behavioral specification of the reaction, is
a valid CCL specification. Therefore, analysis can be done in the early stages of the design, when only the component and
connector structure of the system is known.

An assembly of components is produced by creating component instances and connecting them, as in the following
fragment.

MovementPlanner movementPlanner();
AxisController controllerX("X");

movementPlanner:moveX ~> controllerX:move;

For the connection between two pins to be legal, they need to have the same mode (synchronous or asynchronous) and
they need to have complementing signatures, meaning that the data produced by one pin is consumed by the other and vice
versa. For example, the signature of the pin move in AxisController is as follows.

sink asynch move( consume int pos);

Assemblies declare services (e.g., clocks, keyboard input, console output, etc.) that they expect the environment to
provide. The specification of a service is identical to that of a component, except that the keyword service is used instead. One
important semantic difference, though, is that services are the only source of external events because components cannot
interact directly with the environment.

CCL has an annotation mechanism that can be used to provide information required to analyze the assembly. For example,
the following annotation? indicates the minimum, average, and maximum execution time of the move pin in AxisController
when run in isolation (i.e., with no blocking and no preemption).

annotate AxisController:move {lambda*"’, const string execTime = "G(9.95, 10.01, 10.14)"" }

Only the aspects of CCL most relevant for this paper have been covered here. More details about CCL can be found in [13].

2 The argument “lambda*” indicates the reasoning framework this annotation is used for.
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Fig. 2. ICM meta-model.
4.2. ICM: A meta-model for CCL assemblies

The intermediate constructive model (ICM) is an intermediate representation of a CCL assembly that makes the
generation of analysis models simpler. Instead of having to deal with the language related constructs in the CCL abstract
syntax tree while developing a transformation, it is easier to start from concepts that are more relevant to reason about the
assembly. For example, it is easier to reason about a source pin with an event interarrival distribution, than doing the same
thinking in terms of a computational unit, an annotation and a float literal expression.

The ICM meta-model, shown in Fig. 2, does not have information regarding types and only represents instances. That is,
if there are two instances of the same component type, elements common to both, such as pins, are repeated in the model.
This redundancy also makes it easier to traverse the design in order to transform it to an analysis model. The root element
of the ICM meta-model is the Assemblylnstance, which contains all the service and component instances in the assembly.
These have a common base class, Elementinstance, with all the attributes they share. Components and services have pins
that can be either sink or source. SinkPinInstance has an execution time distribution to represent the amount of CPU time
the sink pin requires. When a source pin belongs to a service (i.e., it is a ServiceSourcePinlcm), it has an event interarrival
distribution and can optionally have an execution time distribution as well. Distributions can be of different kinds, such as
constant or exponential. In order to represent the connections between components, there is a reference sinksbetween pins
that shows which sink pins are connected to a source pin. In a similar way, the reactSources reference indicates the sources
that are triggered by a sink pin in the same component.

5. S-PMIF

The S-PMIF is based on the SPE meta-model. This meta-model defines the essential information required to create the
software and system performance models as defined in [19]. The SPE meta-model class diagram is shown in Fig. 3. The
complete definition is available at www.spe-ed.com/pmif/

An earlier version of this work [2] changed the original meta-model described in [37] to support the specification and
analysis of real-time systems. This paper presents a substantially modified S-PMIF, version 2.0, that adapts the meta-
model so that it can be expressed in terms of the Ecore meta-meta-model—the core meta-model of the Eclipse Modeling
Framework—and restructures the way some key elements are represented in order to align it with the PMIF, LQN, and ICM
meta-models to facilitate M2M transformations.

The original real-time extensions included the creation of the abstract entity Scenario with subclasses PerformanceSce-
nario and ServiceScenario. A PerformanceScenario represents an end-to-end, externally visible interaction (analogous to a Use
Case) while a ServiceScenario is a scenario that provides one or more services to one or more PerformanceScenarios. Perfor-
manceScenarios have workload intensities which may be specified by a number of users and think time (closed workload) or
an inter-arrival time (open workload). ServiceScenarios have an optional intearrivalTime (default is 0) and numberOfinstances.

The primary change to support Ecore is to convert the associative entities in the previous meta-model, OverheadMatrix
and Argc, into either classes or attributes in the new meta-model. The Arc became a class with attributes fromNode and
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Fig. 3. S-PMIF 2.0 meta-model.

toNode. This facilitates adding other attributes to Arcs in the future such as graphical coordinates or distinguishing types of
control flow, such as local and remote procedure calls, as in [53].

To convert the OverheadMatrix, we restructured the entire section of the meta-model which represents the relationship
of software resources, devices, and the overhead matrix. The upper-right section of Fig. 3 shows the revisions. Now a
Project consists of one or more Scenarios and zero or more ComputerResourceRequirements®. A ComputerResourceRequirement
consists of one or more SWResources and Facilities. Each Scenario executes on a Facility, and each Facility has an
OverheadMatrix. A Facility consists of one or more Servers. The term Device in the previous meta-model was changed
to Server to align with the PMIF and because a software performance model may use servers such as a network or a
delay that are not “devices”. An OverheadMatrix consists of one or more OMElements that specify the amount of computer
processing required on one or more Servers for each SWResource. Finally, a Node in an ExecutionGraph specifies zero or more
SWResourceRequirements that specify an amount of service required from the SWResources. SWResourceRequirements may
be specified using Parameters which may be assigned values that will be propagated to all Nodes that use them. All Nodes do
not have SWResourceRequirements; for example, LinkNode and ExpandedNode resource requirements are embedded in the
associated ExecutionGraphs.

The overhead matrix is usually sparse, so the S-PMIF exchanges it by including the FacilityID and the SWResourcelD
attributes with each OMElement value. Tools such as SPE- ED may convert the model information into a matrix for efficient
retrieval of the overhead values.

Earlier extensions to support real-time concepts and align with the ICM added attributes to the meta-model to allow
specification of the following real-time concepts:

e arrivalDistribution (Scenario) and serviceDistribution (Server). The supported distributions are exponential, normal, con-
stant, erlang, hyperexponential, and uniform(u1,u2). The distribution specification is optional; the default is exponential.

3 We allow zero ComputerResourceRequirements because they may be inserted after a design model is transformed, but the software model cannot be
solved without them.
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e schedulingPolicy (Facility). This attribute is an enumerated type (FCFS, IS, LCFSPR, PR, PS, RR, RM) and is optional.
e responseTimeRequirement and throughputRequirement (Scenario). The values of these attributes are real numbers.

In addition, the attributes partnerNodelD and partnerScenario (IDREF) were added to SendNode and attributes were
removed from SynchronizationNode.

Several other minor changes were made to better align S-PMIF 2.0 with other performance-related meta-models, to
clarify terminology, and simplify the M2M transformations:

e The arrival and service distributions were converted from attributes into a distinct class for each type of distribution
that inherit common properties from a Distribution class. The structure matches that in the ICM meta-model in Fig. 2. An
Unknown distribution type was added to S-PMIF to match the ICM.

e A new Deadline attribute was added to ExecutionGraphs to match the ICM. Specifying deadlines for execution
graphs allows one to have a deadline for an overall scenario, as well as for subsets of processing steps. The
ResponseTimeRequirement for a Scenario can be used to specify the overall deadline.

e The relationship from a CompoundNode to a ProcessingNode was changed from aggregation to containment. If there is
a CompoundNode C1 that contains a ProcessingNode N1, Node N1 cannot separately exist in the ExecutionGraph- it
can only exist in C1. There can be a ProcessingNode N2 that occurs in the ExecutionGraph without being contained in
a CompoundNode, but we allow an ExecutionGraph to contain 1..n Nodes that may be ProcessingNodes.

e CompoundNodes no longer contain Arcs for attached nodes because the internal arcs from the CompoundNode to the
attached ProcessingNodes are implicit and have no other function in an ExecutionGraph.

e A new attribute ServerKind with an enumerated type (Server or WorkUnitServer) was added, and the attribute name
DeviceFeature was changed to ServerRequest (type) to better match the PMIF.

o SWResourceRequirements were moved to the Node element (rather than BasicNode and CompoundNode) to allow
specifications for additional types of Nodes.

e An ExecutionGraph now specifies its startNode, but does not have isMainEG because the Scenario points to the main
execution graph with attribute MainEG.

e Attributes in LinkNode were changed because they do not necessarily correspond to PerformanceScenarios, they may be
ServiceScenarios.

e Some attribute names for IDs and IDREFs were changed to better document the connections, e.g., PS.EGId to MainEG.

The S-PMIF is implemented using three separate schemas: Topology, ComputerResourceRequirements, and Distribution®.
Topology may include ComputerResourceRequirements, and both may include Distribution. This is useful because one may
use one of the schemas without using the other. For example, if the computer resource requirements specifications come
from another source, it does not need to be included in the topology, and vice-versa.

This extended version of S-PMIF is substantially different from the 2005 version. So, for instance, prototypes developed
for the earlier version would have to be modified if they are to support these additional features. Model interchange formats
and interfaces, however, must be relatively stable for the model interoperability approach to be viable. S-PMIF was based
on concepts embodied in two earlier model interchange formats: the Electronic Data Interchange Format (EDIF) for VLSI
designs [54] and the Case Data Interchange Format (CDIF) for software design interchange (also based on EDIF) [55]. Creators
of EDIF envisioned the stability problem and addressed it by (1) Using a concept of levels that add functionality at each
successive level and (2) Giving ownership of EDIF to a standards organization that managed changes.

This extended version of S-PMIF adds a level of functionality that includes features for analyzing Real-time systems. We
envision other levels to add features for additional types of analysis. Tools can continue to support a lower level without
change, or may opt to modify interfaces to support additional functionality and/or other changes. A few of these changes
provide a better basis for adding functionality, but it is not essential that they be supported in earlier prototypes. The changes
for the Overhead Matrix, however, will be retrofitted into the 2005 version because they are a major restructuring of the
schema. Earlier prototypes do not need to be updated, but future work should use the newer version, even for the basic
level. Using a standards organization to manage the contents of this and other interchange formats should be considered in
the future.

6. Implementation

6.1. Generating S-PMIF models from CCL

Even though, from the user’s perspective, the transformation to an S-PMIF model starts from a CCL specification, behind
the scenes the CCL specification is transformed first to an ICM model from which the S-PMIF is finally generated.

The ICM meta-model is defined as an Ecore model, the meta-model of the Eclipse Modeling Framework [3]. EMF can
generate the Java implementation classes to load, manipulate and persist instances of the model. The S-PMIF XML schema

4 The previous OverheadMatrix schema was renamed ComputerResourceRequirement to match the terminology used in [53,19]. The Device schema
was included in it. The Distribution schema is new.
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Node visitSource (SourcePinInstance source) {
if source is synchronous {
node = visitSink(sink
} else { // source is asynchronous
node = new SplitNode
for each sink in source.sinks {
newNode = visitSink (sink
add newNode to children of node
}
}
return node

}

Node visitSink(SinkPinInstance sink) {
node = new BasicNode
add SWResourceRequirement to node from sink.execTimeDistribution
lastNode = node
for each source in sink.reactSources {
newNode = visitSource (source)
arc = new Arc
arc.from = lastNode
arc.to = newNode
lastNode = newNode
}

return node

Fig. 4. Pseudocode for simple S-PMIF model generation.

was converted to an Ecore meta-model using EMF. This allowed us to generate the Java implementation to manipulate the
S-PMIF models with EMF and also to use the S-PMIF Ecore meta-model as a target of the model transformation from ICM to
S-PMIF.

The following sections describe the generation of two flavors of S-PMIF model from ICM, the simple model, or no
contention model, and the advanced model. In Sections 6.1 and 6.2 we present the pseudo-code for transformations that
were implemented in Java, using the classes generated by EMF. In Section 6.4, we present the generation of an advanced
model using a model transformation language.

6.2. Generation of the simple model

The overall approach to generate the simple model consists of creating an S-PMIF performance scenario for each service
source pin in the ICM. In that way, the performance scenario encompasses the complete response to an external event. The
execution graph for the performance scenario is created by recursively traversing the response by visiting each pin, starting
with the service source pin. When visiting an asynchronous source pin, a SplitNode is created in the target S-PMIF model to
represent the initiation of concurrent threads of execution. When visiting a sink pin, a BasicNode is created to represent the
computation associated with the pin, and arcs are created to represent the order of execution of the nodes that follow.

Fig. 4 shows the pseudocode for the two functions that implement the core of the transformation described above. The
function visitSource checks whether the source pin is synchronous or asynchronous. In the first case, it directly returns
the node that is created by visiting the sink connected to that source. However, if the source pin is asynchronous, it
creates a SplitNode to represent the initiation of concurrent threads of execution, and adds, to the split node, the nodes
resulting from visiting all the sink pins connected to the source node. The function visitSink creates a BasicNode with a
SWResourceRequirementto model the computation carried out by the sink pin, and then it visits, in sequence, all the source
pins in the same component that are triggered by the reaction of the sink pin. The order of execution is modeled by creating
the arcs connecting the nodes.

One problem that arose while implementing this algorithm was the lack of subtype relationships between the different
kinds of nodes in the S-PMIF schema. In the S-PMIF meta-model, both BasicNode and SplitNode are subtypes of Node.
However, in the XML schema for S-PMIF, the hierarchy was flattened and those relationships were lost [17]. For that reason,
in the Java implementation generated with EMF from the original S-PMIF schema, Node,BasicNode, and SplitNode had no
subtype relationship. This complicated the implementation of the transformation algorithm. For instance, what is the return
type of visitSource if it can return either a BasicNode or a SplitNode? The problem also hindered the use of polymorphism
because it made it impossible to make calls such as lastNode.getNodeld(), where lastNode can refer to different types of
nodes. Although the intent of flattening the S-PMIF schema was to simplify the XML [17], the lack of subtype relationships
proved to have the opposite effect in situations where the XML is generated by a high level modeling technology such as
EMF.

The problem of not having node subtyping was overcome in two different ways. One solution was changing the return
type of visitSource and visitSink to ExpandedNode, and wrapping the result of each function in its own execution graph
contained in an expanded node. This approached worked well, although it generated a lot of expanded nodes and execution
graphs that would otherwise not be needed.

The second solution was more complicated because it consisted of adding subtyping to the schema from which the Java
implementation classes were generated, while maintaining an output format similar to the original S-PMIF schema so that
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<xs:complexType name="EG_type">
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element name="BasicNode" type="BasicNode_ type"/>
<xs:element name="SplitNode" type="CPSNode type"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

Fig. 5. Containment with schema choice.

existing tools could easily adopt the schema for S-PMIF 2.0. The subtyping was added by using the schema type extension
mechanism. In addition, containment relationships that were implemented with XSD choice were changed to use the base
type. For example, the containment relationship shown in Fig. 5 was changed, as it appears in Fig. 6. This change allowed
EMF to generate Java code with the right subtype relationships. However, the generated XML for a BasicNode would look as
follows.

< Node xsi:type=""BasicNode_type”’ Nodeld=""N1".../>

Since this was different from the output compliant with the original S-PMIF schema, XSD substitution groups were
defined so that the desired XML output was produced. A substitution group introduced to the schema with

< xs:element name=""BasicNode"’ substitutionGroup=""Node"’ type=""BasicNode_type'’/>
resulted in the right XML produced as in this example:

< BasicNode Nodeld="N1".../>

The schema was also enhanced to better represent references between instances to simplify the M2M transformation.
For example, the XSD schema specifies ID and IDREF attributes that establish a relationship among entities, such as the
StartNode attribute of an execution graph that specifies the ID of the start node, rather than a pointer to the specific Node
instance desired. This requires extra implementation code to retrieve the desired instance. More importantly, XML validation
tools only check that a model is syntactically correct, but a syntactically correct model may not be semantically correct. For
example, XML requires that the StartNode be a valid ID, but that ID might be associated with a Server rather than a Node and
the model would still be syntactically valid.

Ecore has the ability to better specify these references, so all IDREFs were supplemented with Ecore references. The
following shows the Ecore reference for StartNode:

< xs:attribute name=""StartNode"’ type=""xs:IDREF"’ use=""required’’ ecore:reference=""spmif:Node_type’’/>

In this way, references in the model can be easily navigated as it is intended in the meta-model, without the need for
searching for an instance by ID. The following statement shows how simple it becomes to obtain the starting node of an
execution graph.

start = eg.getStartNode();

6.3. Generation of the advanced model

In a component-based real-time system, the response to an event may be realized by several components that may
execute in their own thread. When creating the advanced S-PMIF model, the different concurrent threads of execution need
to be modeled so that contention between them can be evaluated.

S-PMIF has the concept of a SynchronizationNode that maps directly to the different kinds of pins in CCL. Synchronous
source and sink pins can be represented by SynchronousCall and Reply nodes respectively. Asynchronous source and sink pins
can be modeled by AsynchronousCall and NoReply nodes, correspondingly. The overall approach to generate the advanced
model is to create a performance scenario for each sink pin in the assembly. Each of these scenarios starts with either a
BasicNode or SynchronizationNode depending on whether it is top level (i.e., first in the response to an event) or not. If it
is not top level, the type of the SynchronizationNode is set to match the interaction mode of the pin. This first node in the
scenario has a SWResourceRequirement specifying the execution time required by the sink pin in the CPU. If the component
interacts with other components via its source pins, synchronization nodes of type SynchronousCall or AsynchronousCall are
created to model the interactions with the connected sink pins.

The pseudocode for the algorithm used to generate the advanced model is shown in Fig. 7. The most important function is
getPSForSink. This function creates the scenario for a sink pin in the assembly only if it has not created it before; otherwise,
it returns the already existing scenario. In order to get the partner scenario of these synchronization nodes, getPSForSink
is called recursively. The main function of the transformation, generateModel, just calls getPSForSink for each of the sinks
connected to service source pins in the assembly and sets the corresponding interarrival time for the top level performance
scenarios.

The algorithm presented here depends on a simplifying assumption, namely, that all the sink pins in the assembly
participate in threaded reactions. Nevertheless, it would not be difficult to extend it to support unthreaded reactions as
well, because traversing unthreaded reactions would be the same as was done in the simple model generation algorithm,
except that in this case there would be no split nodes.

Please cite this article in press as: G.A. Moreno, C.U. Smith, Performance analysis of real-time component architectures: An enhanced model interchange
approach, Performance Evaluation (2009), doi:10.1016/j.peva.2009.07.008




G.A. Moreno, C.U. Smith / Performance Evaluation I (1NEN) IEE-RER 13

<xs:complexType name="EG_type">
<xs:sequence>
<xs:element maxOccurs="unbounded" name="Node" type="Node type"/>

</xs:sequence>

</xs:complexType>

Fig. 6. Containment with base type.

generateModel () {
for each serviceSourcePin in assembly {
linkedSink = sink connected to serviceSourcePin
ps = getPSForSink (linkedSink, true)
ps.interarrivalTime = serviceSourcePin.eventDistribution.mean
}
}

PS getPSForSink (SinkPinInstance sink, bool topLevel) {
if PS already created for sink ({
return psMap[sink]
}
ps = new PS
ps.priority = sink.priority
if topLevel {
node = new BasicNode
} else {
node = new SynchronizationNode
if sink is synchronous {
node.myType = Reply
} else {
node.myType = NoReply
}
}
add SWResourceRequirement to node from sink.execTimeDistribution
make node first node in ps
lastNode = node
for each source reacting to sink {
for each linkedSync connected to source {
node = new SynchronizationNode
if sink is synchronous {
node.myType = SynchronousCall
} else {
node.myType = AsynchronousCall
}
node.partnerScenario = getPSForSink(linkedSink, false)
arc = new Arc
arc.from = lastNode
arc.to = node
lastNode = node
}
}
psMap([sink] = ps
return ps

}

Fig. 7. Pseudocode for advanced S-PMIF model generation.
6.4. ATL transformation

In this section, we present a transformation from ICM to an advanced S-PMIF 2.0 model using the ATLAS Transformation
Language (ATL) [4]. ATL is a hybrid model transformation language because it supports both declarative and imperative
constructs. Since the transformations presented in the previous sections were implemented in Java, and therefore in an
imperative style, we implemented this transformation in ATL using the declarative style as much as possible, which is the
style encouraged by ATL.

An ATL transformation takes an input model that conforms to a source meta-model and produces an output model that
conforms to a target meta-model. The transformation is specified as a set of transformation rules. Matched rules, the kind of
rules used in declarative style, specify a source pattern and a target pattern. The source pattern consists of one or more types
from the source meta-model, with an optional guard. When the source pattern is matched in the input model, the elements in
the target pattern of the rule are created in the output model. Bindings in the target pattern allow the initialization of features
(i.e., attributes and associations) of the created elements. Regular matched rules execute when they match elements in the
input model. There is a special kind of matched rule, the lazy rule that is triggered only when it is referred to by other rules.

Figs. 8-11 show the source code of the ATL transformation. The overall approach in this transformation is the same as
that described in Section 6.3. Fig. 8 shows the initial declaration of the module, stating the input and output meta-models.
It also defines some helpers that are used in the transformation rules. For instance, the helper isTopLevel returns true if a
sink pin is directly connected to a service source pin. The rule Assembly2Project shown in Fig. 9 is executed for instances
of AssemblyInstance type of the ICM meta-model found in the input model. The target pattern of the rule indicates that it
creates an instance of ProjectType of the S-PMIF 2.0 meta-model when it is executed. The bindings in the target pattern,
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--Q@atlcompiler atl2006
module advanced;
create OUT : SPMIF from IN : ICM;

helper context ICM!ElementInstance def : getSourcePins()
Set (ICM!SourcePinInstance) =
self.pins->select(p | p.oclIsKindOf (ICM!SourcePinInstance));

helper context ICM!ElementInstance def : getSinkPins()
Set (ICM!SinkPinInstance) =
self.pins->select(p | p.oclIsKindOf (ICM!SinkPinInstance));

helper context ICM!PinInstance def : getFullName() : String =
self.elementInstance.name + '.' + self.name;

-- a top level sink pin is one connected to a service
helper context ICM!SinkPinInstance def : isTopLevel ()

ICM!ServiceSourcePinlIcm.allInstances ()
->collect(src | src.sinks)->flatten()->includes (self);

helper def : CPU : SPMIF!SoftwareResourceType = 0;
helper context ICM!Constant def : computedMean () al = self.value;
helper context ICM!Unknown def : computedMean () 1 = self.mean;

helper context ICM!Uniform def : computedMean () al = (self.max + self.min) / 2.0;
helper context ICM!Normal def : computedMean() : Real = self.mean;

helper context ICM!Exponential def : computedMean() : Real = self.mean;

Fig. 8. ATL transformation source code (part 1).

rule SetupComputerResources () {
to

swResource : SPMIF!SoftwareResourceType (
sWResourceId <- 'R CPU',
sWResourceName <- 'CPU'

)

server : SPMIF!ServerType (
serverId <- 'D_CPU',
serverName <- 'CPU',
quantity <- 1,
serviceUnits <- 'cpuTime',
serviceTime <- 1.0,
serverRequest <- #NonFCFSDemandSpec,
schedulingPolicy <- #PS

)y

omElement : SPMIF!OMElementType (
sWResourceld <- swResource,
serverId <- server,
amountOfService <- 1.0

)y

overheadMatrix : SPMIF!OverheadMatrixType (
oMElement <- Seguence { omElement }

)y

facility : SPMIF!FacilityType (
facilityId <- 'compl',
facilityName <- 'computer',
server <- Sequence { server },
overheadMatrix <- overheadMatrix

)y

computerResourceRequirement : SPMIF!ComputerResourceRequirementType (
facility <- Sequence { facility },
softwareResource <- ¢ = { swResource }

)

do {
thisModule.CPU <- swResource;
computerResourceRequirement;

}

rule Assembly2Project {
from
assembly : ICM!AssemblyInstance
to
project : SPMIF!ProjectType (
projectName <- assembly.name,
computerResourceRequirement <- thisModule.SetupComputerResources (),

—- create one performance scenario for each threaded sink pin
performanceScenario <- assembly.elements
->collect(s | s.getSinkPins())->flatten()
->select (e | e.mode <> #reenter)

Fig. 9. ATL transformation source code (part 2).

introduced by the <— operator, indicate how the features of project are initialized. It can be seen that the project name
is initialized with the name of the assembly. The computerResourceRequirementreference is initialized with the result of a
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abstract rule SinkPin2ScenarioBase {

from
sink: ICM!SinkPinInstance
using {
name : = sink.getFullName () ;
}
to

ps: SPMIF!PSType

scenariolId <- name,

scenarioName <- name,

priority <- sink.priority,
sWmodelfilename <- 'icm',

mainEG <- eg,

executionGraph <- S { eg }

eg: SPMIF!EGType (
eGname <- name,
eGId <- name,
node <- {node,
sink.reactSources->collect (s |
s.sinks->collect (sink
thisModule.Sink2SynchronizationNode (s, sink)))
}->flatten(),
arc <- eg.node->iterate (n;
data : K ype (arcs : >} (SPMIF!ArcType),
lastNode : SPMIF!NodeType)
= {lastNode = OclUndefined}
if data.lastNode = OclUndefined then

{arcs = S {}, lastNode = n}
else
le{arcs = data.arcs->append(
thisModule.ArcForNodes (data.lastNode, n)),
lastNode = n}
endif

) .arcs,

startNode <- node
).
swResourceRequirement : SPMIF!SWResourceRequirementType (

sWResourceId <- thisModule.CPU,

unitsOfService <- sink.execTimeDistribution.computedMean (
).
node : SPMIF!NodeType (

sWResourceRequirement <- swResourceRequirement,

nodeName <- 'N_' + name,

nodeld <- 'N_' + name

Fig. 10. ATL transformation source code (part 3).

called rule named SetupComputerResources (also shown in Fig. 9). Although called rules are considered part of the imperative
style in ATL because they are akin to a procedure call, we have used one here only to avoid the clutter in the Assembly2Project
rule.

The binding initializing performanceScenario, the collection of performance scenarios in the project, is interesting for two
reasons. First, it shows how simple it is to navigate the model using OCL expressions in ATL. In this case, it looks for all
the elements in the assembly and collects the sink pins for all of them in a flat sequence. Then it selects only those sink
pins whose mode is not reentrant (i.e., threaded sink pins). The second interesting thing to note is that the result of the
OCL expression in that binding is a sequence of ICM!SinkPinInstance, when we are initializing a collection of SPMIF!PSType.
ATL finds other matched rules to transform these sink pins. In this case, the rule TopLevelSinkPin2Scenario (Fig. 11) will be
executed. The link between matched source elements and the generated target elements is maintained so that, if the same
sink pin is referred to in a binding, it results in the same performance scenario instance.

ATL supports rule inheritance. The rule SinkPin2ScenarioBase shown in Fig. 10 is an abstract rule that has all the
common declarations needed to create the performance scenario corresponding to a sink pin. In addition to creating the
performance scenario instance, the rule also creates the execution graph for the scenario, a node with its corresponding
SWResourceRequirement representing the execution of the computation of the sink pin, the synchronization nodes to
invoke other components if needed, and the arcs connecting the nodes in the execution graph. The rules SinkPin2Scenario
and TopLevelSinkPin2Scenario shown in Fig. 11 extend SinkPin2ScenarioBase, adding the bindings that are specific to each
case.SinkPin2Scenario creates a synchronization node to accept invocations from other scenarios. TopLevelSinkPin2Scenario
creates a basic node to represent the execution of the sink pin and sets the interarrival interval of the performance scenario
to the mean of the interarrival distribution of the service source pin that invokes the sink pin matched by the rule.

The rule ArcForNodes (Fig. 11) creates an arc connecting two nodes, and the rule Sink2SynchronizationNode (Fig. 11) creates
a synchronization node representing the calling end of the connection between source and sink pins. These two rules are
used by SinkPin2ScenarioBase to create parts of the target elements needed to define the performance scenario.

The ATL transformation from ICM to advanced S-PMIF 2.0 produces the same result as the Java-based transformation
described in Section 6.3 with the exception of the order in which performance scenarios appear in the resulting XML file.
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rule SinkPin2Scenario extends SinkPin2ScenarioBase {
from
sink: ICM!SinkPinInstance (not sink.isTopLevel())
to
ps: SPMIF!PSType
(
interarrivalTime <- 0.0,
numberOfJobs <- 1
)y
node : SPMIF!SynchronizationNodeType (
myType <- if sink.mode = #asynch then #NoReply else #Reply endif
)
}

rule ToplevelSinkPin2Scenario extends SinkPin2ScenarioBase {
from
sink: ICM!SinkPinInstance (sink.isTopLevel())
to
ps: SPMIF!PSType
(
interarrivalTime <- sink.linkSources
->first () .eventDistribution.computedMean (
),
node : SPMIF!BasicNodeType (
sWResourceRequirement <- swResourceRequirement,
nodeName <- 'N_' + name,
nodeId <- 'N_' + name

}

lazy rule ArcForNodes ({
from
fromNode : SPMIF!NodeType,
toNode : SPMIF!NodeType
to
arc : SPMIF!ArcType (
fromNode <- fromNode,
toNode <- toNode

}

lazy rule Sink2SynchronizationNode {

from
source : ICM!SourcePinInstance,
sink : ICM!SinkPinInstance
using {
name : g = 'N_' + source.getFullName() + '_' + sink.getFullName();
}
to
synchronizationNode : SPMIF!SynchronizationNodeType (

nodeName <- name,
nodeId <- name,
myType <- if sink.mode = #asynch then
#AsynchronousCall
else
#SynchronousCall
endif,
partnerId <- thisModule.resolveTemp (sink, 'node'),
partnerScenario <- sink

Fig. 11. ATL transformation source code (part 4).

For the most part, using ATL to implement the transformation has advantages over implementing it in Java. For example,
there is no need to deal with loading and persisting a model because that is done by the ATL environment. In general, the
transformation code is more compact in ATL. For example, the selection of sink pins in the binding of the performanceScenario
feature in the rule Assembly2Project takes approximately ten lines of Java code even with the use of the code generated
by EMF. In addition, rule inheritance not only makes the transformation code more compact, but also shows clearly what
is common and what is specific in the transformation of similar elements. There is one part of the transformation that
required more code when implementing it declaratively, namely the generation of arcs to connect nodes. In the Java version,
a reference to the last node added to the execution graph is kept in a variable and a new arc is created connecting that last
node to the newly created node. In the declarative version in ATL, all nodes in an execution graph are created first, and the
arcs to connect them are created afterwards. That required more code mainly due to the fact that there is always one fewer
arc than nodes. Other disadvantages of ATL, such as tool usability issues, are a consequence of the lack of maturity of ATL
compared to Java. These issues were also noted by Cortellessa et al. in a study comparing Java with ATL for implementing
model transformations for software performance engineering [46].

6.5. Importing the models

The S-PMIF is imported into a software performance modeling tool, like SPE- ED [56,57], SP [58], or HIT [59] for
performance analysis of the software architecture and design, and evaluation of alternatives. The software performance
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Fig. 12. Robot controller design.

modeling tool must either provide an import mechanism for S-PMIF or read input from a file that can be generated from a
translation of the S-PMIF.

We use the SPE- ED tool. SPE- ED uses the Document Object Model (DOM) to import the s-pmif.xml. It first loads and
parses the document, then uses DOM calls to walk through each scenario and create the corresponding nodes and arcs in
SPE- ED. Previous work created a prototype import mechanism [37]. It included neither the import of resource requirements
nor the overhead matrix, so those features were added to handle these models. This was the only extension required for the
simple models. The following additional features required changes to support the real-time extensions and other features
used in the advanced models:

e ServiceScenarios are currently mapped to performance scenarios. In the future, SPE- ED will support ServiceScenarios, so
this is a temporary solution.

e SPE- ED previously assumed arrival times and service times are exponentially distributed; constant interarrival and ser-
vice times were implemented for the case study.

e Preemptive-resume scheduling was added.

e An earlier prototype omitted synchronization nodes and the overhead matrix; they were added for this project.

Note that the S-PMIF file looks the same to the importing tool - the importing tool does not need to know whether it was
generated with Java code, ATL, or by some other means. So no change to the import function is required.

In this use case, analysis results are reported by the SPE- ED tool in its performance visualization format, or in its tables
of results. Recent work provides an alternative for automatically producing results in a convenient format for analysts [60].
Future work will consider a reverse transformation that associates output with elements of the design.

7. Proof of concept

In order to demonstrate the viability of the performance model exchange approach, we selected a real-time application
that was specified with CCL. The application is a simple robot controller that takes high-level work orders for a robot and
translates them to low-level movement commands for the robot’s two axes. Fig. 12 shows the design of the controller. The
solid black boxes are sources of events and, in this case, they all have constant interarrival intervals. For clarity, the period of
the event has been included in the name of the service (e.g. clock130 has a period of 130 ms). Components are depicted as
hollow boxes in the diagram, with sink pins on the left, and source pins on the right. Single and double arrow pins indicate
synchronous and asynchronous interaction, respectively.

The trajectory planner periodically receives high-level orders for the robot and, using information it gets from the position
monitor, decomposes them into subwork orders, which it then puts in the work order repository. The movement planner
gets orders from the repository and translates them into movement commands for the axis-controllers controllerX and
controllerY. The position monitor receives input from a sensor that is read periodically, and the monitor component performs
low-priority monitoring tasks.
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<PerformanceScenario InterarrivalTime="450.0" MainEG="clock450.tick" NumberOfJobs="1"
Priority="1" Scenariold="clock450.tick"
ScenarioName="clock450.tick" SWmodelfilename="icm">
<ExecutionGraph EGId="clock450.tick" EGname="clock450.tick"
StartNode="S clock450.tick">
NodeId="S clock450.tick" NodeName="S clock450.tick">
dNode NodeId="X trajectoryPlanner.go" NodeName="X trajectoryPlanner.go"
Probability="1.0" EGId="E trajectoryPlanner.go"
EGname="E trajectoryPlanner.go"/>

EGId="E trajectoryPlanner.go" EGname="E trajectoryPlanner.go"

StartNode="N trajectoryPlanner.go'>

de NodelId="N trajectoryPlanner.go" NodeName="N trajectoryPlanner.go"
Probability="1.0">

ourceRequirement SWResourceId="R CPU" UnitsOfService="89.66506958007812"/>

h

NodeId="N positionMonitor.read" NodeName="N positionMonitor.read"
Probability="1.0">

ourceRequirement SWResourceId="R CPU" UnitsOfService="3.0634942054748535"/>
Nodeld="N_ repository.access" NodeName="N repository.access"
Probability="1.0">

burceRequirement SWResourceId="R CPU" UnitsOfService="19.92058563232422"/>

e>

FromNode="N trajectoryPlanner.go" ToNode="N positionMonitor.read"/>

FromNode="N positionMonitor.read" ToNode="N repository.access"/>

tionG

</Exec

</PerformanceSc

Fig. 13. S-PMIF for clock450.tick simple model.

Table 1

Robot controller results.
Transaction Best Average Worst
RMA Analytic
clock130.tick 15.04 - 98.04
clock450.tick 112.65 - 262.77
clock150.tick 60.02 - 79.94
clock2000.tick 0.32 - 278.14
DE Simulation
clock130.tick 15.04 33.71 75.08
clock450.tick 247.73 259.49 262.83
clock150.tick 60.02 60.00 60.04
clock2000.tick 0.32 103.08 278.20
SPE-ED Results
clock130.tick 15.04 33.78 99.07
clock450.tick 112.65 259.67 262.77
clock150.tick 60.02 60.02 60.02
clock2000.tick 0.32 7161 278.14

It is critical that the movement planner never finds the repository empty because, if it does, it has to abort the operation
of the robot. Both planners cannot miss their deadline at the end of their period. Therefore, this is a hard real-time situation.
All the sink pins in this design execute on their own thread at different priorities.

The simple model consists of four performance scenarios, one for each source of events. Fig. 13 shows the generated S-
PMIF for the scenario corresponding to clock450. The advanced system model has nine scenarios. Fig. 14 shows the S-PMIF
for the scenarios involved in the response to clock450 in the advanced model. In this case there are three scenarios that
participate in the response, because there are three threads of execution involved in the response. Note that the order of
the scenarios in the model interchange file differs in the Java version and the ATL version. This does not affect the imported
model or the results.

Fig. 15 shows the imported models. On the left is a portion of the simple model corresponding to the execution graph for
the expanded node, E_trajectoryPlanner.go. Its “no contention” solution is shown. On the right is the generated advanced
model consisting of the N_trajectoryPlanner.go basic node followed by two synchronous call nodes.

In order to have a baseline for comparing the results, the controller was analyzed using the worst-case latency prediction
capability provided by the PSK performance-reasoning framework. This analysis first transforms the design specification into
a performance model in which the response to each external event is expressed as a linear sequence of actions, even if the
original response presents branching and internal concurrency. The resulting performance model is then analyzed using the
technique for varying priorities in Rate Monotonic Analysis (RMA) [61]. This analysis is carried out by MAST [15], a third-
party tool integrated with the PSK’s performance reasoning framework. For each response being analyzed, RMA creates the
worst phasing of tasks in order to compute an upper bound for the worst-case latency or response time. Therefore, it is
expected that results obtained by other means be no higher than those provided by RMA.
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<PerformanceScenario InterarrivalTime="450.0" MainEG="trajectoryPlanner.go"
Priority="4" Scenariold="trajectoryPlanner.go"
ScenarioName="trajectoryPlanner.go" SWmodelfilename="icm">
<ExecutionGraph EGId="trajectoryPlanner.go" EGname="trajectoryPlanner.go"
StartNode="N trajectoryPlanner.go'>
e NodeId="N trajectoryPlanner.go" NodeName="N trajectoryPlanner.go">
urceRequirement SWResourceId="R CPU" UnitsOfService="89.665066"/>

chronizationNode NodelId="N trajectoryPlanner.read positionMonitor.read"
NodeName="N trajectoryPlanner.read positionMonitor.read"
myType="SynchronousCall" partnerId="N positionMonitor.read"
partnerScenario="positionMonitor.read"/>
<SynchronizationNode NodelId="N trajectoryPlanner.put repository.access"
NodeName="N trajectoryPlanner.put repository.access"
myType="SynchronousCall" partnerId="N repository.access"
partnerScenario="repository.access"/>
<Arc FromNode="N trajectoryPlanner.go"
ToNode="N_ trajectoryPlanner.read positionMonitor.read"/>
<Arc FromNode="N trajectoryPlanner.read positionMonitor.read"
ToNode="N_ trajectoryPlanner.put repository.access"/>
</ExecutionGraph>
</Performanc
<PerformanceS

rio>

>nario InterarrivalTime="0.0" MainEG="repository.access" NumberOfJobs="1"
Priority="18" Scenariold="repository.access"
ScenarioName="repository.access" SWmodelfilename="icm

<ExecutionGraph EGId="repository.access" EGname="repository.access"

StartNode="N repository.access">
<SynchronizationNode NodelId="N repository.access" NodeName="N repository.access"
myType="Reply">
sourceRequirement SWResourceId="R CPU" UnitsOfService="19.920586"/>
ionNode>

"

</PerformanceS 1ario>
nario InterarrivalTime="0.0" MainEG="positionMonitor.read"
NumberOfJobs="1" Priority="14" Scenariold="positionMonitor.read"
ScenarioName="positionMonitor.read" SWmodelfilename="icm">
<ExecutionGraph EGId="positionMonitor.read" EGname="positionMonitor.read"
StartNode="N positionMonitor.read">
<SynchronizationNode NodeId="N positionMonitor.read"
NodeName="N positionMonitor.read" myType="Reply'">
<SWResourceRequirement SWResourceld="R CPU" UnitsOfService="3.0634942"/>

<Performan

SynchronizationNode>

</ExecutionGr
</PerformancesS 1ario>

Fig. 14. S-PMIF for clock450.tick advanced model.

E_trajectoryPlanner.go

Time, no contention: 112.65 Tick_450
<179.7
N_trajectory <269.8 Trajecory
Planner.go 9.67 Planner.go
<359.9

<450.0 posMonitor.read
>=450.0 Sl
N_position
Moﬁﬁor 3.06
read &=

repository.access

N_reposi- 19.92
tory.access :

Fig. 15. Imported clock450.tick simple and advanced model.

Table 1 shows the performance results. The first two sections are the results from the RMA analysis and a discrete event
simulation integrated in the PSK. The third section shows the SPE- ED results. The best case is the analytic solution of the
SPE- ED simple model. The average and worst cases are the simulation solution of the SPE- ED advanced system model. As
expected, the analytic best case for both RMA and SPE- ED are exact. The simulation solutions are also comparable, but not
exact. This is especially noticeable in the best case because the discrete event simulation best case does include contention.
For example, even in the best case, the response to clock450.tick will be preempted twice by clock150.tick, resulting in a
response time higher than the no-contention best case. The best case results are optimistic; however, they provide the ability
to identify a failure to meet performance requirements. Those problems must be corrected before more precise analyses are
useful.

The next step is to evaluate an alternative architecture that replaces the X and Y controllers with controllers that also
provide position feedback to the position monitor. This changes the scenario for clock150.tick in the simple model to make
two additional calls. It changes the ControllerX and ControllerY threads in the advanced model to make asynchronous calls
to the PositionMonitor.input. Table 2 shows the results for this architectural alternative.
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Table 2

Results for architectural alternative.
Transaction Best Average Worst
RMA Analytic
clock130.tick 15.04 - 124.06
clock450.tick 112.65 - 496.91
clock150.tick 86.03 - 109.02
clock2000.tick 0.32 - 431.24
DE Simulation
clock130.tick 15.04 52.18 115.99
clock450.tick 314.80 347.63 431.04
clock150.tick 86.03 89.57 105.99
clock2000.tick 16.19 220.18 431.36
SPE-ED Results
clock130.tick 15.04 46.51 208.16
clock450.tick 112.65 305.60 317.88
clock150.tick 86.03 90.08 192.65
clock2000.tick 0.32 128.68 413.30

As before, the best case analytic results are exact. However, these results show some differences in the simulation
solutions for the advanced model. In particular, SPE- ED models have higher worst case times for the clock130.tick and
clock150.tick scenarios than RMA analytic results, which should never happen. This is because SPE- ED computes the average
time for all calls to the positionMonitor.input thread. RMA, however, distinguishes between the calls from the different
clocks. For example, positionMonitor.input participates in the responses to clock130 and clock150. The problem is that it
will have different response times for each of the clocks. For instance, when participating in clock130, positionMonitor.input
could be preempted by an arrival from clock150. That preemption would last for approximately 65 ms. However, when
participating in clock150, positionMonitor.input obviously would never be preempted by an arrival from clock150. This is
not a limitation of S-PMIF. A future implementation of SPE- ED will provide results in a format that is more convenient for
real-time analysis.

This proof of concept demonstrates the viability of the model interchange approach for the performance assessment of
real-time system architectures. It is helpful to compare the solutions from different software performance modeling tools.

8. Conclusions

This paper has illustrated the use of a model interchange format to support the performance analysis of real-time
systems. It builds on previous work in the areas of component-based systems, software performance engineering, and model
interchange. Transformations between the Construction and Composition Language and the Software Performance Model
Interchange Format (S-PMIF) were defined for both simple and advanced models. Both custom Java transformations and
M2M transformations were presented. A case study illustrates the process and compares model solutions obtained using
the SPE- ED software performance engineering tool with those obtained using rate-monotonic analysis and discrete event
simulation.

In defining the model transformation, we identified changes to the S-PMIF that were needed for analyzing a real-time
design. We also found that preserving the type hierarchy and associations of the S-PMIF meta-model in the schema facilitates
the implementation of S-PMIF interchange support by tools using strongly typed modeling technologies to generate the XML
such as EMF or ATL.

The changes in the S-PMIF 2.0 meta-model that make it suitable for implementation with Ecore or MOF allow using model
transformation languages to define declaratively the transformation of design models into S-PMIF models for performance
evaluation.

This work has opened a door to allow the performance analysis of CCL specifications with other analysis tools without
the need for additional integration effort. This means that standard SPE models can easily be used for analysis of systems
specified in CCL.

Finally, this paper has demonstrated the ease with which the S-PMIF can be employed to transform additional design
notations into software performance models, thus building on the previous UML-based approaches.
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