
How to Automatically Execute Performance Models
and Transform Output into Useful Results

Connie U. Smith
Performance Engineering Services

PO Box 2640 Santa Fe
New Mexico, 87504-2640 USA

www.spe-ed.com

Catalina M. Lladó, Ramon Puigjaner
Dep. de Cien. Matemàtiques i Informàtica

Universitat de les Illes Balears
07071, Palma de Mallorca, Spain.

cllado@uib.es, putxi@uib.es

Abstract

This paper presents a performance model interop-

erability framework that brings together performance

model interchange formats and experiment specifica-

tions with the automatic generation of performance

analysis results for presentation and publication. We

present a standard approach to define an experiment

consisting of a set of model runs and the output de-

sired from them. We also present a mechanism for

automatically transforming the tool output into useful

results. A proof of concept example demonstrates the

framework.

1. Introduction

The concept of performance model interoperability
was first introduced in 1995 [10]. Methods and tools
supporting model interchange formats have evolved
rapidly since 2004 with the introduction of XML as a vi-
able mechanism for supporting model interchange [7].

Performance model interchange formats (PMIF)
provide a mechanism for automatically moving per-
formance models among modeling tools. Use of the
PMIF does not require tools to know about the capa-
bilities of other tools, internal data formats, or even
existence. It requires only that the importing and ex-
porting tools either support the PMIF or provide an in-
terface that reads/writes model specifications from/to
a file. Interchange formats have also been defined
for layered queueing networks (LQN), UML, Petri Nets
and other types of models.

In each interchange format, a file specifies a model
and a set of parameters for one run. Since model-
ing studies typically require multiple runs of the same
model using different parameters (e.g., different work-

load mixes), this requires preparing and exchanging
multiple interchange files. In addition, interchange for-
mats do not specify the output metrics that are to be
returned after model execution, typically resulting in
either a default set of metrics or all possible metrics.

To address these issues, this paper presents an Ex-
periment Schema Extension (Ex-SE) for defining a set
of model runs and the output desired from them. This
schema extension provides a means of specifying per-
formance studies that is independent of a given tool
paradigm. It requires only that a tool support the Ex-
SE or have an interface that is capable of reading/writ-
ing extended interchange files. This schema extension
was developed for use with an interchange schema
(e.g., PMIF) when exchanging models among perfor-
mance modeling tools. However, it may also be used
in a stand-alone mode to specify studies for the tool in
which the model was created. It may also be used to
specify measurement as well as modeling studies.

To illustrate the use of the Ex-SE, this paper defines
and uses it with the PMIF. Thus, this instance of the
extension is known as PMIF-Ex.

Fig. 1 shows the model interoperability framework
for creating and evaluating performance models. The
model interchange format specifying a performance
model is in the upper left. The formats may be cre-
ated by translating software design models into per-
formance models [2, 11]. They may be created by a
tool that provides a graphical user interface for spec-
ifying the model topology and parameters then cre-
ates model interchange files [5]. They may also be
exported by one modeling tool in order to compare re-
sults to other modeling tools.

The experiment specification file is shown at the
top-right of Fig. 1. These two files are combined and
used as input for one or more performance model-
ing tools. Each tool generates the performance metric

Connie Smith
Copyright © by the authors all rights reserved.
Appears in Proc. CMG 2009.

Figure 1. Model interoperability framework

output, such as response time, throughput, utilization,
etc., specified for each experiment. A performance an-
alyst typically studies this output to form conclusions
about the results of the experiments, then prepares a
presentation and/or report to explain the results.

This paper also streamlines this last step in the
model interoperability framework by defining a Results
Schema Extension (Results-SE) that enables a user-
customized transformation from the output of an ex-
periment into the desired results.

Other work (see [9] for its description) has recog-
nized the need for this last step. Our work develops
the concept and provides a concrete realization of it.

This paper describes the results of recent research
projects and some prototype software that demon-
strates the proof of concept. Hopefully we will see
new tools introduced that provide these capabilities.
Tool developers can use these results by incorporat-
ing support for the model interchange formats into
their tools. Performance analysts can use all or part
of these results with tools that provide a file interface
even if they do not support the model interchange for-
mats. A section at the end of the paper discusses how
to do this.

The next section presents the experiment schema
and provides examples to illustrate how to use it to
express experiments. Section 3 presents the transfor-
mation of tool output into results. Section 4 discusses
a prototype implementation, and Section 5 presents a
proof of concept example. Section 6 discusses how to

make use of this work. Summary and conclusions are
in section 7.

2. PMIF-Ex

This section describes the Experiment Schema Ex-
tension for PMIF. We present the schema and provide
some examples. This schema definition is included
in the host schema (PMIF). An OutputFormat schema
(described later) is also needed in the host schema to
specify the XML format to be used for output from the
experiments.

2.1. Schema

As shown in Fig. 2, the Experiment schema has two
well-differentiated parts. The first part is the variable
specification. This allows the user to specify different
types of variables that can be used anywhere in any
of the solution specifications. Variables refer to an at-
tribute of an element in the model (for example the
ArrivalRate of a specific OpenWorkload). They can be
used to assign different values to that attribute, iterate
over it, and so on. Expressions combining variables
can be assigned to LocalVariables. Finally, an Ouput-
Variable specifies a concrete result that will be used in
the solution specification (for example, OutputVariable
UCPU represents the Utilization of the node named
CPU).

Figure 2. Experiment schema

The second part is the solution specification, which
indicates the experiment and the output desired. That
is, the variables to be written in the output, the results
(e.g., throughput or utilization) and possibly tool spe-
cific output.

The ToolCommand element allows specification of
control parameters that are not included explicitly be-
cause they depend on the tool.

The ExperimentType allows for assignments, itera-
tions, alternations and a specific Solve command to
specify the point where the model is to be solved. The
Solve command also specifies the type of solution (an-
alytical, simulation). Fig. 2 shows in detail the Itera-
tion (but not Alternation due to lack of space). The
Iteration requires at least one Range of values and
one Solve statement. It can also have one or more
StopWhen conditions that may stop the iteration ear-
lier than specified by the Range(s). It can also include
assignments, iterations, and alternations.

Thus, the Ex-SE allows specification of:

• Changes in parameter values from one execution
of a model to the next

• Specification of control in performing model stud-
ies, including iteration and alternation

• Variables that are local to the experiment to be
used in computations and output

• Model-results dependent execution

• Use of previous output as input to subsequent
runs

• Specification of the output metrics to be returned

• Solution type specifications.

The schema specifies the syntactic characteristics
of the Experiment. Additional semantic constraints
and assumptions used in PMIF-Ex are provided at:
www.spe-ed.com/pmif/.

2.2. PMIF-Ex Example

Fig. 3 illustrates how to express a typical experi-
ment with PMIF-Ex. It shows an excerpt from the
specification for the case study presented in [9]. This

<Var iab le Attr ibuteToChange= ” NumberOfJobs ” WorkloadName= ” Forms ” Name= ” NForms ” />
<Var iab le Attr ibuteToChange= ” NumberOfJobs ” WorkloadName= ” Apply ” Name= ” NApply ” />
<Var iab le Attr ibuteToChange= ” NumberOfJobs ” WorkloadName= ” Store ” Name= ” NStore ” />
<Var iab le Attr ibuteToChange= ” NumberOfJobs ” WorkloadName= ” Convert ” Name= ” NConvert ” />
<Loca lVar iab le Name= ” TotTput ” I n i t i a l V a l u e = ” 0.0 ” />
<OutputVar iab le ResultToUse= ” Throughput ” WorkloadName= ” Forms ” Name= ” TForms ” I n i t i a l V a l u e = ” .016 ” />
<OutputVar iab le ResultToUse= ” Throughput ” WorkloadName= ” Apply ” Name= ” TApply ” I n i t i a l V a l u e = ” .005 ” />
<OutputVar iab le ResultToUse= ” U t i l i z a t i o n ” ServerName= ”CPU” Name= ”UCPU” I n i t i a l V a l u e = ” 0 ” />
<OutputVar iab le Name= ”SumTFormTApp” Expression= ” TForms+TApply ” />
<Solut ionSpec>

<I t e r a t i o n >
<Range VariableName= ” NForms ” S t a r t = ” 18 ” End= ” 36 ” Step= ” 9 ” />
<Range VariableName= ” NApply ” S t a r t = ” 32 ” End= ” 64 ” Step= ” 16 ” />
<Range VariableName= ” NStore ” S t a r t = ” 50 ” End= ” 100 ” Step= ” 25 ” />
<Range VariableName= ” NConvert ” S t a r t = ” 30 ” End= ” 60 ” Step= ” 15 ” />
<StopWhen OutputVariableName= ”UCPU” Test= ”GE” Value= ” .99 ” />
<StopWhen OutputVariableName= ” Tform+TApp” Test= ”LE” Value= ” TotTput ” />
<Solve So lu t ion ID= ”Run1 ”>

<S o l u t i o n A n a l y t i c />
</Solve>
<Assign VariableName= ” TotTput ” Value= ” (TForms+TApply) ” />

</ I t e r a t i o n >
<OutputSpec>

<Wri teVar iab le VariableName= ” TotTput ” />
<WriteOutput Met r i c= ” ResponseTime ” />
<WriteOutput Met r i c= ” Throughput ” />
<WriteOutput Met r i c= ” U t i l i z a t i o n ” />

</OutputSpec>
</Solut ionSpec>

Figure 3. PMIF-Ex example

is a specification used in an actual complex, large-
scale model of a system with 4 workloads (Forms, Ap-
ply, Store, and Convert). The details of the model are
relatively unimportant for this example. Using a model
of an actual, complex, large-scale model, however,
does show that the EX-SE can represent the types of
studies that are often conducted in practice and shows
that they can be conducted faster with EX-SE. This ex-
ample illustrates the use of a local variable (TotTput),
results testing (the StopWhens), setting multiple val-
ues in one iteration (the four Range specifications),
the use of multiple StopWhen clauses, the compari-
son of the results of one iteration to the results of the
previous iteration (throughput of TForms+TApply) and
other features. The complete PMIF-Ex file for the case
study is at www.spe-ed.com/pmif/.

3 Transforming Output to Results

First we discuss the typical situations, or Use

Cases, for conducting modeling experiments and an-
alyzing results. Next we identify typical output and re-
sults that are needed for those Use Cases. Then we
present our approach to providing the output and re-
sults.

3.1 Requirements for Producing Results

QNM may be used in a variety of fields from com-
puter performance evaluation to any other field that

is interested in the behavior of queues and servers.
This paper addresses computer performance evalu-
ation; other applications of QNM may require exten-
sions to the analysis and results.

The most common reasons that performance ana-
lysts build and analyze QNM models are to:

1. Monitor and report on operational system perfor-
mance

2. Analyze capacity requirements for future work-
load volumes

3. Evaluate problematic systems, identify causes
and study options

4. Compare model results to measurements

5. Conduct technical investigations to compare re-
sults from: multiple tools, different solution algo-
rithms, or even different types of solutions.

The next step is to determine the output metrics
and results that are most often desired for these Use
Cases. Is there a typical set of output and results, or
are they unique to each situation? Are they the same
for the Use Cases or do they have significant differ-
ences? How are they typically presented? There has
been a lot of interest lately on visualization; how is vi-
sualization of performance model results used in prac-
tice?

The Proceedings of the Computer Measurement
Group are the main source of papers written by prac-
titioners about the results of their performance model-
ing studies [3]. We examined a sample of papers from
the Computer Measurement Group 25th anniversary
edition of the proceedings (1974 through 1999) [3] -
the main source of practitioner modeling papers. Re-
search results in other publications are similar.

We found three types of results: tables, graphs or
charts in spreadsheet tools, and metric values embed-
ded in the text of the paper. Some combinations of
performance metrics occur frequently; examples are:
service times and response times for several work-
loads; and throughput, response time and CPU uti-
lization for several workloads.

Our conclusion is that the primary results are ta-
bles and charts. Charts are derived from tables, so
they can be combined into one “result.” Since there
are many common combinations of both tables and
charts, the specifications for those should be stream-
lined.

This approach is simplistic. Nevertheless, the ev-
idence shows that the majority of published papers
containing performance model results use these three
simple approaches. Visualization techniques are
emerging, but are currently used mainly with perfor-
mance measurements rather than performance model
results. As additional visualization techniques for per-
formance model results are developed they can be in-
corporated into the Results-SE.

The most common format for tables and charts is
xls [1] as in spreadsheet tools such as Excel and
OpenOffice, and imported by most presentation and
word processing packages. However, the most com-
mon document preparation system for research publi-
cations is LaTex. Our approach transforms the output
metrics to tables and charts in xls and LaTex.

Additionally, we support two transformation modes:
create a new table/chart and update an existing one.
The update mode is convenient because it is unlikely
that final results will be produced with one pass. It is
also convenient when tables involve output from multi-
ple tools. More importantly, it is easier to define table
and chart formats by typing column and row headings
or chart specifications directly into the spreadsheet
rather than specifying transformation commands to
create them.

This work does not address the metric values that
are embedded in text. They have no tedious format-
ting requirements, and they might be best suited to the
performance tree question/answer approach [12].

3.2 Model Transformation Approach

This section covers our approach for transforming
the output of the performance model solutions into the
desired results. The first section addresses the output.
The next section explains the transformation by first
describing the key issues and decisions, the approach
for simplifying the generation of standard results, and
some implementation issues.

The Output Schema Extension is in Fig. 4. The
“ValueUsed” applies to Ranges or other variables
used in the experiment specification and reports the
value used for that particular solution.

The metrics that may be produced are in the Out-
putWorkload (overall results by workload), OutputN-
ode (overall results by Node), and OutputNodeWork-
load (results by Workload for Nodes). For more infor-
mation see www.spe-ed.com/pmif/.

The output desired is specified in the Experiment
specification. For each solution, the user may specify:
WriteVariable, WriteOutput, or a ToolCommand that is
passed to the tool unchanged. This allows users to
print custom reports, visualization output, etc. partic-
ular to the tool, see [9].

The next step is to provide for an automatic conver-
sion of the output into the table and chart results. We
considered 2 options related to how those tables and
charts would be expressed:

1. To use a “standard” xsd schema for spreadsheets
for the results specification and transform the
output into the xml format that follows such a
schema.

2. To develop a transformation specification from
output into the standard elements of a spread-
sheet: rows, columns, and charts and transform
the output into xls or LaTex format.

Some spreadsheet tools, such as OpenOffice, do not
yet support xml import and export, and the “standard”
schema does not include chart specifications. Option
1 would require an additional schema to specify the
transformation. Thus we chose the second option be-
cause it provides a specification of tables and charts
using familiar notation, e.g., numeric rows and alpha-
betic columns. Java tools support the creation of a
spreadsheet in xls format.

Fig. 5 shows the Results-SE schema. The Output-
SE has a collection of outputs for each OutputSo-
lutionSpec (or Solve) in the Experiment-SE. So the
Results-SE specifies how to process each of those,
and specifies the file/s containing the output. It can
specify one or more tables (in xls tables go into dif-
ferent worksheets). WriteResult specifies the type of

Figure 4. Output Schema Extension

output metric to use (Node, Workload, etc.), the metric
(such as response time), and where to place the val-
ues in the table (row, column, etc). There is a place-
holder for Chart specifications to be added in future
work.

4. Implementation

A prototype interface was implemented to demon-
strate the feasibility of the PMIF-Ex framework. The
implementation requires a mechanism to create an
experiment definition, and a mechanism to interpret
the experiment, solve the models accordingly, and
return the requested output. In this section, imple-
mentation alternatives for each of these are described
then the interface implementation for executing exper-
iments using Qnap citeModlineQnap is presented. In
Section 5, the use of the prototype is illustrated with
two case studies.

4.1. Creating the experiment specification

There are three alternatives for creating the experi-
ment specifications:

1. It is relatively easy to use an XML editor, such
as XMLSpy, to create experiments for a particular
model paradigm.

2. Create a tool with a GUI for describing experi-
ments and generating the XML.

3. Tools that have an experimentation capability
could export their experiment definition along with
the model interchange format.

We used the first alternative for this proof of concept.

4.2. Executing the experiment

There are two alternatives for interpreting the ex-
periment specifications, solving the models accord-
ingly, and returning the requested output. The choice

depends on whether or not the target tool provides its
own capability for experimentation.

Tools without experimentation need an Experi-
menter tool to interpret the experiment, invoke the tool
for each <Solve>, and return the output. This can be
a general tool that can work with multiple solvers.

Tools with experimentation can adapt their Import
mechanism to generate the tool specifications for the
experiment. This is a more efficient implementation
because the tool only needs to be invoked once, and
the model does not need to be parsed multiple times.
We used this alternative for the proof of concept be-
cause Qnap provides direct support for experimenta-
tion. Future work will address a general purpose Ex-
perimenter tool.

4.3. Prototype implementation

The prototype implementation is based on PMIF
and Qnap, a queueing network-based modeling tool.
Qnap can be used on its own or accessed via Mod-
line [6]. which provides a graphical, user-friendly inter-
face for model definition and interactive visualization of
the results.

The prototype uses Qnap without modification and
does not make use of the Modline interface (Qnap2
v.9.3 [6]). Qnap reads the input (QNM and experiment
specification) from a file and writes the results to an-
other file that also includes the input.

Ultimately, it would be best for Qnap to have an in-
terface that would read from its standard file OR the
pmif.xml file. However, we did not have access to
the Qnap source code and we could not implement
such an interface directly. Therefore, we translated the
pmif.xml file into a file in Qnap’s format to demonstrate
the proof of concept. We were initially disappointed
with this limitation, but later realized that this confirms
that this approach can be used with any modeling
tools that provide a file interface and do not require
any changes to the tool itself. Thus this is a broadly

Figure 5. Results-SE schema

applicable approach that can be used with most mod-
eling and even measurement tools.

The model and experiment translation from a
pmif.xml file into a Qnap input file is done using XSLT.
We generate a specific XSLT file that transforms a
pmif-ex.xml file into a file that can be directly read and
executed by Qnap. Additionally, Qnap allows the pro-
gramming of any input/output operations and so the
generation of an XML output file is possible. Some of
the detailed issues in the Experiment Schema trans-
formation are as follows:

1. Qnap variables can only be 8 characters, so a
routine does this check, truncates the identifier if
necessary and generates unique names if it hap-
pens to be a duplicate.

2. Iterations are implemented as While statements
that finish when any of the StopWhen conditions
occur or when any of the Ranges reaches its End
value.

3. Alternations are implemented as If statements.

4. Qnap gives a default output that is written to the
standard output (typically the screen or a file).
The necessary instructions for Qnap to create an-
other file and write the specified results on the
pmif-ex.xml in XML format are also generated by
the transformation.

The Transform prototype has been implemented
in Java, using the Document Object Model (DOM)
to read and validate the xml files (Output and Re-
sultsSpec). We have also used the Apache POI APIs
for manipulating MS Excel and OpenOffice file formats
using pure Java.

5. Proof of concept

To validate the prototype, we selected a published
experiment that provides sufficient data on the model,

the output, and the experiment for reproducibility. The
experiment is published in [4]. It shows 4 runs of a
model presented on page 574-5. The first run is the
original model. It is an open model with one CPU and
two disks. The second run increases the workload ar-
rival rate. The third explores the advantage of caching
by increasing service times, and reducing the demand
on one of the disks. The last run uses a lower cost
server with only one disk. An excerpt of the experi-
ment specification is in Fig. 5.

This example also shows how to manually create
a table, specify formats, enter the results from another
source, then update the remaining values with the out-
put from the experiment.

We run the experiment using Qnap to produce the
Output file of performance metrics specified in the ex-
periment (the complete experiment specification is at
www.spe-ed.com/pmif/). We manually create an
xls file with the formatting and Jain results taken from
his book [4]. We then update the file using the results
specification (an excerpt is in Fig. 5) to produce the
table in Fig. 8.

Table 8 shows that the results reported in the book
match the results derived from the Prototype inter-
change of the PMIF-Ex model for Runs 1,2, and 4.
The results for Run 3, however, differ due to an error
in the book. It incorrectly uses 16 CPU visits in calcu-
lating CPU demand, rather than the correct value of 12
visits. We only noticed this error after the models pro-
duced different results. Even though this is a simple
experiment, it demonstrates the successful use of the
PMIF-Ex model interchange and automatic generation
of xls results.

This example also shows the value of having an au-
tomated interface for executing multiple experiments.
Automated experiments substantially reduce the time
required to run models when tools do not provide an
internal experimentation capability. The proof of con-
cept also shows the value of being able to compare

<SolutionSpec>

<SolutionAnalytic/>

<Solve SolutionID="Run1" />

<Assign VariableName="C1Arrival" Value="4" />

<Solve SolutionID="Run2" />

<Assign VariableName="C1Arrival" Value="3" />

<Assign VariableName="CPUServiceTime" Value="0.013" />

<Assign VariableName="DiskBServiceTime" Value="0.033" />

<Assign VariableName="DiskBVisits" Value="4" />

<Assign VariableName="DiskAProb" Value="0.58333" />

<Assign VariableName="DiskBProb" Value="0.33333" />

<Assign VariableName="OutProb" Value="0.08333" />

<Solve SolutionID="Run3" />

<Assign VariableName="CPUServiceTime" Value="0.01" />

<Assign VariableName="DiskBVisits" Value="0" />

<Assign VariableName="DiskAVisits" Value="15" />

<Assign VariableName="DiskAProb" Value="0.9375" />

<Assign VariableName="DiskBProb" Value="0.00" />

<Assign VariableName="OutProb" Value="0.0625" />

<Solve SolutionID="Run4" />

<OutputSpec>

<WriteVariable VariableName="C1Arrival" />

<WriteOutput Metric="ResponseTime" />

<WriteOutput Metric="Throughput" />

<WriteOutput Metric="Utilization" />

<WriteOutput Metric="ResidenceTime" />

</OutputSpec>

</SolutionSpec>

Figure 6. Excerpt of Experiment Specification

<OutputProcessingSpec RowIncrement="3"FileToProcess="Jain574.xml">

<WriteSolutionID Format="5" Row="3" Col="1" />

<WriteLabel Value="Qnap" Row="5" Col="1" />

<WriteResult Type="OutputWorkload" Metric="ResponseTime" Row="5" Col="2"/>

<WriteResult Type="OutputNodeWorkload" Metric="ResidenceTime" Row="5" Col="3"

ColIncrement="1"/>

<WriteResult Type="OutputNode" Metric="Utilization" Row="5" Col="6" ColIncrement="1"/>

<OutputProcessingSpec>

Figure 7. Excerpt of Results Specifications

results from different tools using PMIF-Ex. With it the
models solved are identical - there are no errors due
to manual re-entry of the model into a different tool.

6. How to Make Use of These Results

If your performance modeling tools do not yet sup-
port the model interchange formats, you can still use
all or part of these results to automate your modeling
studies. If your tool(s) provide a file interface, you can
use XSLT or custom code to convert a PMIF specifica-
tion to the file format. An example of this conversion is
in [8]. If your tool provides the ability to define experi-
ments, convert the experiment definition into the tool’s
format. If it does not, you an create a tool to inter-
pret the experiment specification, change the model
input file accordingly, solve the model, then examine
the output when necessary to determine the next ac-
tion.

We anticipate that tools will be available soon to
convert model solutions from the Output-SE format to

results in xls format. So, you can also use XSLT or
custom code to convert your modeling tool output into
the Output-SE format and use those tools to automati-
cally produce reports and presentations. You can also
convert results from measurement tools into this for-
mat so tables can compare model results to measure-
ments.

Note that it only requires one input and output trans-
lator per tool, so if you develop this capability, please
share the tools with others.

7. Summary and Conclusions

This paper has described an Experimental Schema
Extension (Ex-SE) for defining performance modeling
experiments. The schema allows specification of mul-
tiple model runs along with the output that is desired
from them. This schema extension provides a means
of specifying performance studies that is independent
of a given tool paradigm. It requires only that a tool
support the Ex-SE or have an interface that is capa-

Figure 8. Xls file automatically produced for Jain’s case study

ble of reading/writing extended interchange files. The
Ex-SE allows specification of:

• Changes in parameter values from one execution
of a model to the next

• Specification of control in performing model stud-
ies, including iteration and alternation

• Variables that are local to the experiment to be
used in computations and output

• Model-results dependent execution

• Use of previous output as input to subsequent
runs

• Specification of the output metrics to be returned

• Solution type specifications

The Ex-SE was developed for use with an inter-
change schema, such as the Performance Model In-
terchange Format (PMIF), for exchanging models be-
tween queueing network based modeling tools. How-
ever, it may also be used in a stand-alone mode to
specify studies for the tool in which the model was cre-
ated. It may also be used to specify measurement as
well as modeling studies.

This paper has also presented the output-to-results
transformation to produce performance analysis re-
sults for presentation and publication. We defined the
requirements for the transformation by identifing typi-
cal Use Cases, surveying output and results found in
practice for those Use Cases, and summarizing our
approach for satisfying those requirements. We then
presented the output specification, the issues in the
output-to-results transformation, and rationale for de-
cisions made. The results specification schema was
then presented followed by a description of our proto-
type implementation.

This paper has presented a particular instantiation
of the Ex-SE, the PMIF-Ex and provided examples of
its use. To demonstrate that the concept is feasible,

we have also described a prototype implementation of
the PMIF-Ex and Qnap. Finally, we presented a proof
of concept example to demonstrate the generation of
the performance results.

Our general purpose approach was demonstrated
with PMIF, however it also applies to other modeling
paradigms, tools, and even measurement tools. It sup-
ports the automation of model studies from the cre-
ation of the performance model specification, the ex-
periments to be conducted with the model, the ex-
ecution of models and transformation of output to
tables and charts for presentation and publication.
It supports multiple Use Cases (tracking operational
system performance, analyzing capacity requirements
for future workload volumes, evaluating problematic
systems, comparing results to measurements, and
technical investigations of the model technology). It
streamlines typical tasks such as exploring output and
identifying results for presentation. It is a standard for-
mat that can be used by multiple tools.

Future work will develop additional templates for the
most frequent results and implement additional pro-
totypes for updating tables and creating charts. We
will apply the framework to other tools, and extend it
to apply to real time systems. An interesting exten-
sion might include creating rules for specifying thresh-
old values and highlighting results in tables that ex-
ceed the threshold. We also envision the integration
of Performance Trees in the interoperability framework
by relating the queries to the output in order to pro-
duce results. The validity of the prototype was demon-
strated with a case study. Future work will also extend
the PMIF to include features supported by simulation
solvers and incorporate these capabilities into a tool
framework.

The PMIF-Ex XML schema is available at www.
spe-ed.com/pmif/.

Acknowledgment

This work is partially funded by the TIN2006-02265
QUASIMODO project of the Ministerio de Educacion y

Ciencia, Spain. Smith’s participation is sponsored by
US Air Force Contract FA8750-09-C-0086.

References

[1] Microsoft office binary (doc, xls, ppt) file for-
mats. www.microsoft.com/interop/docs/

OfficeBinaryFormats.mspx.
[2] S. Balsamo and M. Marzolla. Performance evaluation

of UML software architectures with multiclass queue-
ing network models. In Proc. of the Fifth International

Workshop of Software and Performance (WOSP), July
2005.

[3] CMG. Computer Measurement Group. www.cmg.

org.
[4] R. Jain. The Art of Computer Systems Performance

Analysis: Techniques for Experimental Design, Mea-

surement, Simulation, and Modeling. John Wiley,
1991.

[5] SEAlab Software Quality Group. WEASEL, a web
service for analyzing queueing networks with multiple
solvers. sealabtools.di.univaq.it/SeaLab/

Weasel/.
[6] Simulog. MODLINE 2.0 QNAP2 9.3: Reference Man-

ual, 1996.
[7] C. Smith and C. Lladó. Performance model inter-

change format (PMIF 2.0): XML definition and imple-
mentation. In Proc. of the First International Confer-

ence on the Quantitative Evaluation of Systems, pages
38–47, September 2004.

[8] C. Smith and C. Lladó. Performance model inter-
change format (PMIF 2.0): XML definition and imple-
mentation. tecnical report. Technical report, Perfor-
mance Engineering Services, 2007.

[9] C. Smith, P. R. Lladó, C.M., and L. Williams. Inter-
change formats for performance models: Experimen-
tation and output. In Proc. of the Fourth International

Conference on the Quantitative Evaluation of Systems,
pages 91–100, September 2007.

[10] C. Smith and L. Williams. Panel presentation: A per-
formance model interchange format. In Proc. of the

International Conference on Modeling Techniques and

Tools for Computer Performance Evaluation, 1995.
[11] C. U. Smith, V. Cortellessa, A. Di Marco, C. M. Lladó,

and L. G. Williams. From uml models to software per-
formance results: An SPE process based on XML in-
terchange formats. In Proc. of the Fifth International

Workshop on Software and Performance (WOSP),
pages 87–98, July 2005.

[12] T. Suto, J. T. Bradley, and W. J. Knottenbelt. Per-
formance trees: A new approach to quantitative per-
formance specification. In Proc. 14th Intl. Symp. on

Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS06). IEEE
Computer Society, September 2006.

