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While scalability is important to today's software applications, few organizations under-
stand how to quantitatively evaluate their software's scalability. This paper describes the
Quantitative Scalability Evaluation Method, QSEM. QSEM uses straightforward measure-
ments to quantify the scalability of a software application. The results provide an under-
standing of the application's scalability that makes it possible to extrapolate behavior to
larger configurations with confidence. The seven steps of the QSEM method are described

and illustrated with a case study.

INTRODUCTION

Scalability is one of the most important qualities of
today’s software applications. As businesses grow, the
systems that support their functions also need to grow
to support more users, process more data, or both. As
they grow, it is important to maintain their performance
(responsiveness or throughput) [Smith and Williams
2002]. Poor performance in these applications often
translates into substantial costs. Customers will often
shop elsewhere rather than endure long waits. Slow
responses in CRM applications mean that more cus-
tomer-service representatives are needed. And, failure
to process financial trades in a timely fashion can result
in statutory penalties as well as lost customers.

Despite its importance, scalability is poorly understood
and few organizations understand how to quantitatively
evaluate an application’s scalability. As a result, they
often make assumptions about the scalability of their
software. If wrong, these assumptions can be costly.

This paper describes the Quantitative Scalability Evalu-
ation Method, QSEMSM. A QSEM evaluation provides
the information needed to quantitatively predict the
scalability of an application system. It allows you to
determine whether you can meet your scalability
requirements and, if there is more than one feasible
alternative, provides the information you need to select
the one that best meets your overall objectives.

SM QSEM and PASA are service marks of PerfX and Perfor-
mance Engineering Services.

Scalability is a system property; however, the software
architecture is a key factor in achieving scalability. For
example, if the software architecture is not able to use
additional resources to increase throughput, the sys-
tem will not be scalable. The choice of execution envi-
ronment is also very important—the same workload
executed on two different platforms can exhibit signifi-
cantly different scalability properties [Williams and
Smith 2004].

QSEM uses straightforward measurements of maxi-
mum throughput at different numbers of processors or
nodes. The results of the data analysis provide an
understanding of the application's scalability that
makes it possible to extrapolate behavior to higher
numbers of processors or nodes with confidence.

QSEM may be applied as a stand-alone method for
evaluating application scalability. It is also employed as

part of the PASASM approach to the performance
assessment of software architectures [Williams and
Smith 2002] where scalability is a concern and the
required measurements can be obtained.

We begin with an overview of scalability. This is fol-
lowed by a description of the QSEM method. We then
illustrate the application of QSEM with a case study.

SCALABILITY OVERVIEW

Despite its technical and economic importance, there is
no generally accepted definition of scalability. In this
paper, we will use the following definition [Williams and
Smith 2004]:



Scalability is a measure of an application system’s
ability to—without modification—cost-effectively pro-
vide increased throughput, reduced response time
and/or support more users when hardware resources
are added.

An application may be scaled to provide more through-
put, handle more users and/or reduce response time.

Scaling Strategies

Applications are scaled by adding resources to remove
a bottleneck. The bottleneck could, in principal, be any
resource: CPU, disk, network, and so on. The bottle-
neck could also be a software resource, such as a
thread. However, the term “scaling” is most commonly
used to mean adding processors.

It is possible to distinguish two basic scaling strategies:

» Vertical scaling (scale-up)—resources (CPUs,
memory, disks) are added to a single server to
increase capacity

» Horizontal scaling (scale-out}—additional nodes
or servers are used to increase capacity

As demonstrated in [Williams and Smith 2004], these
strategies can yield very different results depending on
the application. They may also have very different cost
functions.

Removing one bottleneck may cause another to
emerge. For example, we may be able to increase
capacity by adding processors to a system but discover
that, at some point, the load causes another resource,
such as a disk, to become the bottleneck. At this point,
our scaling strategy must shift to address this second-
ary bottleneck. An exampile illustrating the effects of a
secondary bottleneck is presented in [Williams and
Smith 2004].

Categories of Scalability

We recognize three categories of scalability. This clas-
sification scheme is similar to that proposed by Alba for
speedup in parallel evolutionary algorithms [Alba
2002].

* Linear scalability—the capacity (as measured
by throughput) of the system with p processors
is p times the capacity with one processor. That
is, doubling the number of processors will dou-
ble the system’s throughput.

» Sub-linear scalability—the capacity of the sys-
tem with p processors is less than p times the
capacity with one processor. That is, doubling
the number of processors does not double the
system’s throughput.

» Super-linear scalability—the capacity of the sys-
tem with p processors is more than p times the
capacity with one processor. That is, doubling

the number of processors more than doubles
the system’s throughput.

These three categories of scalability are illustrated in
Figure 1.
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Figure 1: Categories of Scalability

Linear Scalability Linear scalability can occur if the
degree of parallelism in an application is such that it
can make full use of the additional resources provided
by scaling. For example, if the application is a data
acquisition system that receives data from multiple
sources, processes it and prepares it for additional
downstream processing, it may be possible to run mul-
tiple streams in parallel to increase capacity. In order
for this application to scale linearly, the streams must
not interfere with each other (for example via conten-
tion for database or other shared resources) or require
a shared state. Either of these conditions will reduce
the scalability below linear.

Sub-Linear Scalability Sub-linear scalability occurs
when the system is unable to make full use of the addi-
tional resources. This may be due to properties of the
application software, for example if delays waiting for a
software resource such as a database lock prevent the
software from making use of additional processors. It
may also be due to properties of the execution environ-
ment that reduce the processing power of additional
processors, for example: overhead for scheduling; con-
tention among processors for shared resources, such
as the system bus; or communication among proces-
sors to maintain a global state. These factors cause the
relative capacity to increase more slowly than linearly.

Super-Linear Scalability At first glance, super-linear
scalability would seem to be impossible—a violation of
the laws of thermodynamics. After all, isn’t it impossible
to get more out of a machine than you put in? If so,
how can we more than double the throughput of a com-
puter system by doubling the number of processors?

The fact is, however, that super-linear scalability is a
real phenomenon. The easiest way to see how this



comes about is to recognize that, when we add a pro-
cessor to a system, we are sometimes adding more
than just a CPU. We often also add additional memory,
disks, network interconnects, and so on. This is espe-
cially true when expanding clusters (horizontal scaling).
Thus, we are adding more than just processing power
and this is why we may realize more than linear
scaleup. For example, if we also add memory when we
add a processor, it may be possible to cache data in
main memory and eliminate database queries to
retrieve it. This will reduce the demand on the proces-
sors, resulting in a scaleup that is more than can be
accounted for by the additional processing power
alone.

For more details on these categories of scalability and
a discussion of models that exhibit these types of
behavior, see [Williams and Smith 2004].

Models of Scalability
Currently, we use four models to analyze and predict
the scalability of applications:

+ Linear scalability

* Amdahl's Law

» Super-Serial Model
» Gustafson’s Law

The Super-Serial Model is an extension of Amdahl’s
Law and has appeared in the context of on-line trans-
action processing (OLTP) systems [Gunther 2000], in
beowulf-style clusters of computers [Brown 2003] and
others. Amdahl's Law and Gustafson’'s Law were
developed in the context of speedup for parallel algo-
rithms and architectures. Amdahl's Law and the Super-
Serial Model, describe sub-linear scalability.
Gustafson’s Law, describes super-linear scalability.
Williams and Smith discuss these models and illustrate
their utility for Web applications [Williams and Smith
2004].

We note that, due to their complexity, it is likely that
some systems will not conform to any of these models.
It is therefore important to determine—via analysis of
measured data—that a given system actually follows a
known model before making decisions based on pre-
dicted scalability.

Enhancing Scalability

Scalability isn’t just a hardware issue. While adding
processors is the most common approach to scaling an
application, it may not always be the most cost-effec-
tive. It is often possible to increase the scalability of an
application through simple modifications to the soft-
ware architecture. For problem systems, this may be
the only way to achieve scalability requirements. Soft-
ware approaches to enhancing scalability include:

* reducing the demand at the bottleneck
resource,

* increasing the degree of parallelism in the appli-
cation,

» reducing contention for shared resources, and
» reducing the effects of interprocessor communi-
cation.

The choice of whether to use a hardware or software
approach—or a combination of the two—to achieving
scalability requirements will depend on several factors.
A quantitative evaluation of the application’s scalability
provides a starting point for weighing these alterna-
tives.

The next section provides an overview of the QSEM
method. The following section illustrates the application
of QSEM with a case study.

THE QSEM METHOD

QSEM is a model-based approach to quantitatively
evaluating the scalability of Web-based applications
and other distributed systems. The analysis uses
readily-obtained data from straightforward measure-
ments of throughput at different numbers of processors
or nodes. The results provide an understanding of the
application's scalability that makes it possible to extrap-
olate behavior to higher numbers of processors or
nodes with confidence. Different configurations can be
measured to study the effectiveness of different scaling
strategies (e.g., vertical versus horizontal scaling). The
most effective strategy can then be selected based on
technical feasibility as well as other needs of the orga-
nization.

The QSEM method consists of seven steps. The steps
are typically performed in the order given. In some
cases, however, the order may be varied and some
steps can be conducted concurrently. For example,
some measurement planning steps do not require that
all the previous steps be complete to begin. Also, dis-
covery of new information in one step often requires
revisiting a previous one, so iteration is possible.

The seven steps of the QSEM method are:

1. Identify critical Use Cases—Identify the externally
visible behaviors of the software that are critical to
responsiveness or scalability.

2. Select representative scalability scenarios—For
each critical Use Case, identify the scenarios that
are important to scalability.

3. Determine scalability requirements—Identify pre-
cise, quantitative, measurable scalability require-
ments.



4. Plan measurement studies—Identify the bottleneck
resource, plan measurements, develop load gener-
ator scripts, determine what parameters to mea-
sure, identify needed measurement tools, and
document the test plans.

5. Perform measurements—Conduct the measure-
ment experiments, collect data, and document the
results.

6. Evaluate data—Evaluate the measurement data to
determine whether the scalability requirements can
be met and select the best scaling strategy.

7. Present results—Present results and recommenda-
tions to stakeholders.

The first three steps are concerned with gathering the
information needed to perform the measurement stud-
ies and evaluate their results. The next two steps
address planning and carrying out the required mea-
surements. The last two steps focus on evaluating the
measured data and presenting the results to stakehold-
ers.

Once the results have been presented, stakeholders
can use this information to select the scaling strategy
that best meets their needs.

The following sections describe each step in more
detail.

Step 1: Identify Critical Use Cases

Use Cases describe externally visible behaviors of the
software. From a scalability perspective, the critical
Use Cases are those that describe the most common,
or typical, uses of the application. Critical Use Cases
may also include functions that are executed infre-
quently but have high resource demand [Smith and
Williams 2002]. The critical Use Cases will be a small
subset of the possible Use Cases.

Step 2: Select Representative Scalability Scenarios
Each Use Case consists of a set of scenarios that
describe the sequence of actions required to execute
the Use Case. Not all of the scenarios belonging to a
critical Use Case will be important from a scalability
perspective. We focus on the scenarios that are exe-
cuted frequently in typical uses of the application (and/
or have high demand) and thus contribute to the domi-
nant workload.

For example, in a customer relationship management
(CRM) application there may be many ways to retrieve
customer account information such as: account num-
ber search, name search, zip code search, and so on.
If one of these possible paths is executed only infre-
quently, it will not be important to scalability unless it
has very large resource demand. In this case, we use

the product of the probability of execution and resource
demand to determine if the scenario is important to
scalability. If account number is used almost exclu-
sively to retrieve customer accounts, only this scenario
will be important to scalability. If a name search is also
typically used, we will need to include the scenarios for
each and know the relative frequency or probability of
using each alternative.

Scenarios provide the basis for writing load generator
scripts. To ensure that these scripts are an accurate
reflection of the behavior of the application, scenarios
should be documented in as much detail as possible.

We use UML sequence diagrams [Booch, et al. 1999],
[Smith and Williams 2002] to document scenarios. In
an object-oriented system, a sequence diagram
describes the objects (individual objects, components,
or subsystems) that cooperate to perform a function
and the sequence of interactions between them. For
non-object-oriented systems, a sequence diagram doc-
uments the major software units that perform a function
and their interactions. An example of a sequence dia-
gram appears in the case study (Figure 2).

To construct representative load generator scripts, we
also need quantitative information about typical execu-
tion paths. Examples of parameters that are important
for constructing representative scripts are: think times
between user requests, typical database queries, the
probability of taking different execution paths, and so
on. For example, for a CRM application we might need
to know:

+ the probability of executing the account number
search versus the name search

» the time between steps in the scenario, such as
RetrieveCustomerAccount, ViewPayHistory,
and DocumentContact requests

» the characteristics of the database accesses
and the amount of data displayed

We will also need to know the workload mix if multiple
scenarios contribute to the dominant workload—the
functions that are executed most frequently and
account for most of the resource usage [Smith and Wil-
liams 2002].

These parameters may be obtained from performance
measurements of the application, from measurements
of user behavior (e.g., from productivity measures),
and/or from interviews. We usually develop initial end-
to-end scenarios through interviews with application
specialists and users, then supplement this information
with measurements of some of the required parame-
ters.



Many times, particularly with legacy systems, Use
Cases and scenarios have not been documented.
Then, the scalability team must work with the applica-
tion team and end-users to identify the important uses
of the software and detail the processing steps that are
executed in order to develop representative load gen-
erator scripts. The process used for eliciting this infor-
mation is similar to that used for performance
walkthroughs, as discussed in [Smith and Williams
2002].

With applications for which Use Cases and scenarios
have not been documented, this step is often one of
the most valuable outcomes of a QSEM evaluation.
Documenting scenarios:

» provides developers with an end-to-end view of
the application that is otherwise difficult or
impossible to obtain, especially on large
projects,

» facilitates validation of load generator scripts
and collection of representative parameters

* aids in explaining results of the scalability evalu-
ation to stakeholders

* helps identify modifications that will improve
scalability

Step 3: Determine Scalability Requirements
Precise, quantitative scalability requirements provide a
rigorous basis for evaluating various scaling strategies
and selecting the one that most closely meets your
needs. Scalability requirements are often determined
by combining performance requirements, current work-
load volume, and projected growth.

For example, if our current capacity is 50 end-user
transactions per second (tps) and we expect our busi-
ness to grow by 10% per year over the next five years,
at the end of five years we will need a capacity of:

C = 50(1+0.1)°
C = 80.5 tps

We may plan to meet that requirement by purchasing
all of the required capacity now or by adding capacity
annually or at some other interval.

Scalability requirements may be expressed in several
different ways, including response time, throughput, or
constraints on resource usage. Sometimes, a combina-
tion of these is needed. For example, we may specify a
throughput of 500 typical transactions per second with
an average response time of 1 second. We might also
require that CPU utilization be less than 50% to provide
for failover. Note that a “typical” transaction must also

be defined. The data required to do this is gathered in
Step 2.

In each case, the requirement should be quantitative
and measurable. Vague statements such as “the sys-
tem shall handle as many users as possible” are not
useful. There is no way that you can ever be sure that
you have met a requirement like this. A requirement
such as “the CRM system must handle at least 1,000
end-to-end CustomerPaymentinteractions per second”
is much more useful for a quantitative evaluation of
scalability.

It is also important to specify the conditions under
which the required performance is to be achieved.
These conditions are typically expressed in terms of
the workload mix (when there are multiple scalability
scenarios) and the expected intensity.

Step 4: Plan Measurement Experiments

This discussion assumes that you are already familiar
with the fundamentals of conducting performance mea-
surements, such as determining whether you need an
isolated target platform versus sharing it with other
work, installing the proper releases of software, using a
representative database, etc. If you are unfamiliar with
such topics, you can find this information in [Smith and
Williams 2002], [Ferrari, et al. 1983], or [Jain 1990].

As mentioned earlier, the measurements that we need
are maximum throughput as a function of the number
of processors or nodes. We also need measurements
of the utilization of significant resources (e.g., CPUs,
disks, network) in the system at maximum throughput
to identify potential secondary bottlenecks and their
effect on scalability.

Identify the Bottleneck Resource We begin by iden-
tifying the bottleneck resource. This information drives
the measurement studies. For example, if the bottle-
neck resource is the application server CPU, then we
measure the maximum throughput as a function of the
number of application server processors or nodes. On
the other hand, if the bottleneck resource is the net-
work, we don't gain much by performing experiments
that vary the number of application server CPUs. We
need to remove this bottleneck before proceeding, for
example by upgrading the network.

It is also important to make sure that the bottleneck
resource is not a software resource, such as a thread.
If, at maximum throughput, the utilization of every hard-
ware resource is low, it is likely that there is a software
bottleneck such as a One-Lane Bridge antipattern
[Smith and Williams 2002]. Again, this bottleneck must
be removed before proceeding.



Plan Measurements To provide the best possible
data for later analysis, measurements of maximum
throughput should be made for at least four configura-
tions (number of processors or nodes) for each scaling
strategy under consideration. For example, you may
plan to make measurements for 1, 2, 4 and 8 proces-
sors for a vertical strategy or 1, 2, 3, and 4 nodes for a
horizontal strategy.

For each configuration, the test plan should include the
initial number users, the increment in users, and the
time interval between increments.

Develop Load Generator Scripts Use the scalability
scenarios identified earlier to develop a load generator
script for a representative workload mix. Important con-
siderations in developing scripts include:

* Use representative, randomly-generated user
think times (constant interarrival times will skew
the results).

* Avoid using think times of zero. While this may
speed up the measurements, it will result in
underestimation of the number of users that the
system can support.

» Scripts should reflect all of the processing steps
on the resources that determine scalability (e.g.,
the application and database servers are typi-
cally key resources, the firewall usually is not).

* The measurement database should reflect the
size and content of the production environment
for the scalability horizon. In particular, it is
important to access different portions of the
database to avoid having the data in cache.

Determine What Parameters to Measure For each

configuration to be measured, we need to know:

» the maximum throughput versus the number of
processors (for vertical scaling) or the number
of nodes (for horizontal scaling)

+ the utilization of the CPUs and other critical
resources in the system

You may want to measure other performance metrics
(e.g., response times, disk I/Os, virtual memory paging,
etc.), particularly when you are looking for opportunities
to improve the application software.

We have also found it useful to record the number of
users and throughput at several points while ramping
up the load for each configuration studied. This infor-
mation can be useful in validating capacity planning
models.

Identify Needed Measurement Tools Once you have
decided what to measure, determine the measurement
tools that provide the metrics you need. Your load

driver may measure all of the data you may need
directly. If not, it will be necessary to run one or more
other measurement tools independently to collect the
missing data. If multiple tools are needed, determine
the start up and shut down procedures that you need to
get meaningful measurements for (only) the duration of
the experiment.

It is also important to plan how you will correlate the
results provided by the different tools. For example, if
you are using an independent tool to measure CPU uti-
lization, make sure that timestamps with the appropri-
ate granularity are available so that you can accurately
determine the CPU utilization at maximum throughput.

Document the Test Plans Finally, document the mea-
surement plans and procedures so that you and your
colleagues will know how to repeat the experiments
without re-discovering the entire process.

Step 5: Perform Measurements

In this step you execute the measurement experiments
documented in the plans and procedures formulated in
the previous section, collect the data, and document
the results—including the date and time—so they can
be clearly identified in the evaluation step. In some vol-
atile environments, versions of the software, the mid-
dleware, and the platform itself may vary between
experiments. While it is preferable to more closely con-
trol these aspects of the environment, it is sometimes
unavoidable and you should at least document the con-
figuration information for each experiment.

Several additional considerations are related to the
running of the experiments:

» Make sure the “ramp up” of users is steady and
controlled and that you can correlate the num-
ber of users with data from any other tools that
you use.

* Determine the maximum throughput by increas-
ing the number of users and measuring the
throughput at each point. When the throughput
no longer increases (perhaps even decreases),
you have reached maximum throughput.

* Run each experiment long enough to reach
steady state and stay there for several mea-
surement intervals (don’t just run it until new
users are rejected).

* Repeat several experiments and measure sev-
eral data points to confirm that they are repeat-
able, and if not identify and correct problems.

Conduct at least one trial experiment before performing
the actual scalability measurements to ensure that your
procedure will work and will provide the data you need
for the evaluation.



Step 6: Evaluate Data

To evaluate the measured data, we use regression
analysis to determine which of the scalability models
best describes the application’s observed behavior and
estimate the model's parameters. We then use the
model to predict the scalability of the application. The
regression analysis is described in more detail in [Will-
iams and Smith 2004].

The result of the analysis is a prediction, of maximum
throughput versus number of processors or nodes.
However, we do not really want to operate at or near
maximum throughput. Or, we may have a requirement
to support a specific number of users. Once the results
of the scalability analysis are known, standard capacity
planning models (e.g., queueing network models) can
be used to size the final configuration. The case study
illustrates one possibility for this type of analysis.

Step 7: Present Results
The results include:
» Use Cases and scenario documentation
» descriptions of measurements (including sce-
narios, workload intensities, configurations,
scripts)
» summary of measured data
+ summary of data analysis
+ identification of feasible scaling strategies
+ capacity projections for feasible strategies

If there is more than one technically feasible alternative
and economic data that allows comparison of their
costs is available, this comparison can also be included
in the report.

These results may be in the form of a presentation, a
written report, or a combination of the two.

Stakeholders then use this information to select the
scaling strategy that best meets their needs.

CASE STUDY

In this section, we illustrate the QSEM process with an
example. The application has been disguised to pre-
serve confidentiality. Some details have also been sim-
plified for presentation.

The example is a Web Service that provides credit
authorization services for e-commerce sites. Custom-
ers select items on-line—possibly using a shopping
cart service—and, when ready, make their purchase
using a credit card. This Web Service accepts transac-
tion authorization requests and determines whether the
request is accepted or declined.

The execution environment consists of an application
server and a database server. Two alternatives for the
application server were considered:

* a 1.6 GHz platform capable of hosting up to 16
processors for vertical scaling

+ two-way 1.6 GHz servers which are replicated
for horizontal scaling

The database server is an 16-way 1.3 GHz server with
RAID disks.

Step 1: Identify Critical Use Cases

There is one critical Use Case for this application—
AuthorizeTransaction. A request for authorization
arrives from a client e-commerce site. The request is
checked against information in the database and the
authorization is either accepted or rejected.

Step 2: Select Representative Scalability Scenarios
An authorization request includes card information
(card number and security data) and transaction infor-
mation such as amount and vendor. Card data is then
retrieved from the database and authorization rules are
applied. The transaction may be authorized or
declined. If the transaction is authorized, it is posted to
the database and an authorization code is returned to
the client. Figure 2 shows the sequence diagram for
this scenario.

::Client ::AuthorizationService ::CardData
{location = ClientSite} {location = AppServer} {location = DBServer}
T T T
authorigationRequest(card, trangaction) |
i i I
getData(card) |

cardData

[authorizationStatus] |

postAuthorization(card, transgttion)
authorization | |

Figure 2: Credit Authorization Scenario

Note that we do not include scenarios that are not exe-
cuted frequently, such as exception handling for miss-
ing or erroneous data. These scenarios do not impact
scalability.

To construct a representative measurement script, we
need to know the probabilities for approving and reject-
ing authorization requests. For the purposes of this



case study, they are 0.91 for approval and 0.09 for
rejection.

Each client has multiple shoppers making purchases
and therefore submits frequent authorization requests.
From the point of view of the Web Service, each client
appears to be a single user with a “think time” of two
seconds. This is the effective interarrival time from all
clients.

Step 3: Determine Scalability Requirements
Currently, the system is supporting approximately 100
clients with a maximum throughput of 35.8 authoriza-
tion transactions per second. Marketing projections
indicate that the system will need to scale to support
500 clients with a throughput of at least 200 transac-
tions per second within two years. At that load, the
response time must be 0.1 second or less.

Step 4: Plan Measurement Studies

To identify the bottleneck resource, the utilization of the
application server and database server CPUs as well
as the database server disk were measured as a func-
tion of load. Collecting this data required use of another
tool and correlation of the utilization measurements
with those of the load driver. The results confirmed that
the application server CPU is the bottleneck resource.

It was decided to use a workstation running a commer-
cial load driver to generate virtual users. Scripts were
constructed to produce virtual users executing the rep-
resentative scenario described above. A separate tool
was used to measure utilizations.

The measurement plans called for investigating both
horizontal and vertical scaling options. Four configura-
tions were specified for each study. These are
described in the following section.

Step 5: Perform Measurements

The results of the vertical and horizontal scaling stud-
ies are described in the following sections.

Table 1: Vertical Scalability Measurements

Number of 1 2 4 8
Processors

Max tps 18.1 35.6 711 136.8
Appserver CPU

Utilization at Max tps 99 99 98 99

DB Server CPU
Utilization at Max tps

DB Server Disk
Utilization at Max tps

.04 .09 .18 .34

.03 .05 11 .21

Vertical Scaling To evaluate the vertical scaling char-
acteristics of this application, measurements of maxi-

mum throughput (transactions per second) were
obtained for a single application server with 1, 2, 4, and
8 processor configurations. This server is a 1.6 GHz
platform capable of hosting up to 16 processors. Utili-
zations for the application server and database server
CPUs as well as the database server disk were also
measured. Table 1 shows the results of these mea-
surements.

Horizontal Scaling To evaluate the horizontal scaling
characteristics of this application, measurements of
maximum throughput (transactions per second) were
obtained for 1, 2, 3, and 4 application server nodes.
Each node is a two-way 1.6 GHz platform. Again, utili-
zations for the application server and database server
CPUs as well as the database server disk were also
measured. Table 2 shows the results of these mea-
surements.

Table 2: Horizontal Scalability Measurements

Number of

Nodes 1 2 g &
Max tps 31.8 65.1 92.6 122.9
Appserver CPU

Utilization at Max tps 99 99 99 99

DB Server CPU
Utilization at Max tps

DB Server Disk
Utilization at Max tps

.08 .16 .23 .31

.05 .09 14 19

Step 6: Evaluate Data

The measured utilizations indicate that the application
server CPU is the bottleneck resource in both the verti-
cal and horizontal scaling studies.

The measured data for maximum throughput was used
to construct graphs of maximum throughput versus
number of processors (vertical scaling) or nodes (hori-
zontal scaling). Regression analysis determines which
of the scalability models—if any—best describes the
data. Details of the analysis are discussed in [Williams
and Smith 2004]. The analysis provides model parame-
ters which are then used to extrapolate the behavior to
higher numbers of processors.

Vertical Scaling Regression analysis indicates that
Amdahl’s Law provides the best fit to the measured
data (r? = 0.9373). The vertical scalability of this appli-
cation is therefore described by Equation 1 [Williams
and Smith 2004]:

Xmnax(1 xp

1+o(p-1) (1)

Xmax(P) =

where: p is the number of processors



Xmax(1) is the maximum throughput with 1 pro-
cessor

Xmax(p) is the maximum throughput with p pro-
cessors

o is the fraction of the workload that is per-
formed sequentially.

The value of ¢ obtained from the regression analysis is
0.0082.

Figure 3 shows the measured data and the throughput
modeled using Amdahl’'s Law with the value of o
obtained from the regression analysis.
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Figure 3: Measured and Modeled Data for Vertical
Scaling

The Amdahl’'s Law extrapolation indicates that the
maximum throughput with 12 processors would be 199
tps and the maximum throughput with 13 processors
would be 214 tps. Thus, the required throughput of 200
transactions per second can be achieved with 13 pro-
cessors.

However, at 214 tps, the system is operating at nearly
one-hundred percent utilization on the application
server CPU. This results in a response time of 0.43
second which is greater than the required 0.1 second.

To provide lower response times and ensure that there
is some headroom for transient loads, we will size the
system to operate at the “knee” of the throughput curve
[Jain 1990]. This point occurs at the intersection of the
vertical and horizontal asymptotes of the curve as illus-
trated in Figure 4.

The number of users corresponding to this point is
given by :

., DrtZ

where: N* is the number of users at the knee of the
curve

Dt is the total demand at all resources

,“4— Slope = 1/(D1 +Z)
/

Throughput 'é

N* Number of Users

Figure 4: “Knee” of Throughput Curve
Dp is the demand at the bottleneck resource
Z is the think time.

Table 3 shows the value of N* throughput, and
response time for various numbers of processors.

Table 3: Number of Users—\Vertical

Number Number Response
of of Users | Throughput Time
Processors N* (tps) (sec)
13 430 206 .085
14 459 220 .082
15 489 235 .081
16 517 249 .079

Table 3 indicates that, to support 500 users at a mini-
mum of 200 tps and a response time of 0.1 second or
less, we will need 16 processors.

With 16 processors, 517 users executing 249 transac-
tions per second will yield an application server CPU
utilization of 0.96. The database server CPU and disk
utilizations will be 0.62 and 0.37 respectively. Thus, a
secondary bottleneck is not a consideration at this
time.

Horizontal Scaling Regression analysis indicates that
the horizontal scaling data is best described by Linear
scalability (r2 = 0.9974). The horizontal scalability of
this application is therefore described by Equation 3:

Xmax(p) = Xmax(1) x p (3)

Where p, Xmax(1), and Xmax(p) have the same mean-
ing as in Equation 1.

Figure 5 illustrates the measured data and the through-
put modeled using the Linear model.

The linear model predicts that the maximum throughput
with six nodes will be 186 tps and the maximum
throughput with seven nodes will be 217. Thus, the
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Figure 5: Measured and Modeled Data for Horizontal
Scaling

required throughput of 200 tps can be achieved with
seven nodes.

At 217 tps, we would be operating at near-saturation on
the application servers and the response time would be
0.43 second. To meet the 0.1 second requirement, we
will again size the system to operate at the knee of the
throughput curve. Table 4 shows this point for various
numbers of nodes.

Table 4: Number of Users—Horizontal

Number Number Response
of of Users | Throughput Time
Nodes N* (tps) (sec)
7 436 209 .085
8 498 239 .080
9 560 269 .076

Table 4 indicates that, to support 500 users at a mini-
mum of 200 tps and a response time of 0.1 second, we
will need nine nodes.

With nine nodes, 560 users executing 269 transactions
per second will yield an application server CPU utiliza-
tion of 0.96. The database server CPU and disk utiliza-
tions will be 0.67 and 0.40 respectively. Thus, a
secondary bottleneck is not a consideration with hori-
zontal scaling either.

Overall Evaluation The results of the data analysis
indicate that both the vertical and horizontal scaling
strategies are capable of meeting the requirement of
supporting 500 users with a throughput of at least 200
transactions per second. Since both scaling strategies
can be used to meet the scalability requirements, the
choice of strategy will depend on other criteria.

One way to distinguish between these strategies would
be cost. For the vertical strategy, the hardware cost for
the platform with all 16 processors is approximately
$67,000. For the horizontal strategy, the cost of nine
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servers is approximately $72,500. Based on the hard-
ware costs only, the vertical strategy is less costly.
Costs for software licenses, system administration, and
facilities are likely to increase the gap between the two
strategies.

If future expansion is a consideration, we might prefer
the horizontal strategy, however. With 16 processors,
the vertical platform is at maximum capacity. While the
current server could be replaced by a larger one or a
second server of the same size could be added, the
incremental cost would be high. In this case, the hori-
zontal strategy might be preferable.

A discussion of software alternatives for improving the
scalability of this application is beyond the scope of this
paper. However, we note that, if the demand on the
application server can be reduced substantially, the
number of processors or nodes required to achieve our
scalability requirement would also be reduced. In par-
ticular, for the vertical case, this would mean that fewer
than 16 processors would be needed, leaving room for
future expansion on that platform. Thus, if future
expansion is a requirement, we might evaluate whether
a combination of vertical scaling and software improve-
ments is better than a pure horizontal scaling strategy.

The particular choice of strategy is not important for
this case study. What is important is that the QSEM
analysis provided the information needed to make an
informed choice based on technical feasibility as well
as other needs of the organization.

Step 7: Present Results

A preliminary presentation summarized the results of
the analysis. This was followed by a written report that
included scalability scenarios, load driver scripts and
measurement procedures, a summary of the measure-
ments and data analysis, and a discussion of the
results.

SUMMARY AND CONCLUSIONS

Scalability is one of the most important qualities of
today’s software applications. Despite its importance,
however, scalability is poorly understood and few orga-
nizations understand how to quantitatively evaluate an
application’s scalability. As a result, they often make
assumptions about the scalability of their software. If
wrong, these assumptions can be costly.

This paper has described QSEM, a quantitative
approach to evaluating the scalability of applications.
QSEM may be applied as a stand-alone method for
evaluating application scalability. It is also employed as
part of the PASASM approach to the performance
assessment of software architectures [Williams and



Smith 2002] where scalability is a concern and the
required measurements can be obtained.

QSEM is a model-based approach to quantitatively
evaluating the scalability of Web-based applications
and other distributed systems. The analysis uses
readily-obtained data from straightforward measure-
ments of throughput at different numbers of processors
or nodes. The results provide an understanding of the
application's scalability that makes it possible to extrap-
olate behavior to higher numbers of processors or
nodes with confidence. Different configurations can be
measured to study the effectiveness of different scaling
strategies (e.g., vertical versus horizontal scaling). The
most effective strategy can then be selected based on
technical feasibility as well as other needs of the orga-
nization.

The QSEM process consists of the following steps:

Identify critical Use Cases

Select representative scalability scenarios
Determine scalability requirements

Plan measurement studies

Perform measurements

Evaluate data

NS g ks~

Present results

These steps insure that the scalability measurements
are made under conditions that are representative of
the way in which that application is used and that the
results of the evaluation are reproducible.

A case study illustrated the data needed for a QSEM
evaluation and the types of results that are obtained.
Additional details of the data analysis technique are
presented in [Williams and Smith 2004].
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