
Copyright 2005 by the authors. All rights reserved. 
Appears in Proc. Workshop on Software and Performance 2005 

From UML models to software performance results:  
An SPE process based on XML interchange formats 

 
Connie U. Smith 

Performance Engineering Services 

PO Box 2640 

Santa Fe, New Mexico 

87504-2640, USA 
www.perfeng.com 

Catalina M. Lladó 
Universitat Illes Balears 

Departament de Matemàtiques I Informàtica 

Cra. de Valldemossa, Km 7.6 

07071 Palma de Mallorca, Spain 
cllado@uib.es 

 

Vittorio Cortellessa, Antinisca Di Marco 
Dipartimento di Informatica 

Università dell’Aquila 

Via Vetoio, Coppito 

L’Aquila, 67010, Italy 
cortelle@di.univaq.it 

adimarco@di.univaq.it 

Lloyd G. Williams 
Software Engineering Research 

2345 Dogwood Circle 

Louisville, CO 80027 
lloydw@perfx.net 

ABSTRACT 
The SPE process uses multiple performance assessment tools 
depending on the state of the software and the amount of 
performance data available. This paper describes two XML 
based interchange formats that facilitate using a variety of 
performance tools in a plug-and-play manner thus enabling the 
use of the tool best suited to the analysis. The Software 
Performance Model Interchange Format (S-PMIF) is a common 
representation that is used to exchange information between 
(UML-based) software design tools and software performance 
engineering tools.  On the other hand, the performance model 
interchange format (PMIF 2.0) is a common representation for 
system performance model data that can be used to move 
models among system performance modeling tools that use a 
queueing network model paradigm. This paper first defines an 
XML based S-PMIF based on an updated SPE meta-model Then 
it demonstrates the feasibility of using both the S-PMIF and the 
PMIF 2.0 to automatically translate an architecture description 
in UML into both a software performance model and a system 
performance model to study the performance characteristics of 

the architecture. This required the implementation of some 
extensions to the XPRIT software in order to export UML 
models into the S-PMIF and a new function in the SPE·ED 
software to import S-PMIF models, which are also described. 
The SPE process and an experimental proof of concept are 
presented. 

 

Categories and Subject Descriptors 
B.8.2 [Hardware]: Performance Analysis and Design Aids; D.2 
[Software]: Software Engineering; C.4 [Performance of 
Systems]: Modeling Techniques. 

Keywords 
Software Performance Engineering, tool interoperability, XML, 
performance model, UML, interchange format, automated 
model building, SPE process, methods and tools 

1. INTRODUCTION 
The SPE process uses multiple performance assessment tools 
depending on the state of the software and the amount of 
performance data available. This paper describes two XML 
based interchange formats that facilitate using a variety of 
performance tools in a plug-and-play manner, thus enabling the 
use of the tool best suited to the analysis. A Software 
Performance Model Interchange Format (S-PMIF) is a common 
representation that can be used to exchange information 
between (UML-based) software design tools and software 
performance engineering tools. Using it, a software tool can 
capture software architecture and design information along with 
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some performance information and export it to a software 
performance engineering tool for model elaboration and solution 
without the need for laborious manual translation from one 
tool’s representation to another, and the need to validate the 
resulting specification.  

S-PMIF enables the following Software Performance 
Engineering (SPE) tasks:  

1. Developers can prepare designs as they usually do and 
export the data to SPE tools where performance 
models can be constructed automatically. 

2. The model transformation can be used to check that 
the resulting processing details are those intended by 
the UML specification. 

3. Data available to developers can be captured in the 
development tool – other data can be added by 
performance specialists in the SPE tool. 

4. Rapid production of models makes data available for 
supporting design decisions in a timely fashion. This 
is good for studying architecture and design tradeoffs 
before committing to code. 

5. Developers can do some of this on their own without 
needing detailed knowledge of performance models. 

 

The performance model interchange format (PMIF 2.0) is a 
common representation for system performance model data that 
can be used to move models among system performance 
modeling tools that use a queueing network model paradigm 
[20]. A user of several tools that support these formats can 
create a model in one tool and easily move models to other tools 
for further work.  

This paper first defines an XML based S-PMIF based on the 
meta-model of software performance model information 
requirements in [22]. Then it demonstrates the feasibility of 
using both the S-PMIF and the PMIF 2.0 to automatically 
translate an architecture description in UML into both a 
software performance model and a system performance model 
to study the performance characteristics of the architecture. The 
software performance model provides best and worst case 
performance data for an architecture/design. If the predicted 
performance results do not meet performance requirements, the 
model identifies critical areas and makes it easy for an analyst to 
study alternatives for correcting problems and quantify the 
performance improvement of each. Once an appropriate 
architecture/design is selected, the PMIF can be used to transfer 
the model to a system execution model to study additional facets 
of the operating environment and look for problems due to 
contention, locking, etc., and to study the effect of changes in 
the computer or network environment. 

This overall process is beneficial because no single tool is good 
for everything. Early in development one needs to quickly and 
easily create a simple model to determine whether a particular 
architecture will meet performance requirements. Precise data is 

not available at that time, so simple models are appropriate for 
identifying problem areas. Later in development, when some 
performance measurements are available, more detailed models 
such as Queueing Network Models (QNM), Stochastic Petri 
Nets (SPN), or Process Algebra (PA) models can be used to 
study intricacies of the performance of the system. At that time, 
different tools are desirable that provide features not in the 
simpler models. These “industrial strength” modeling tools are 
seldom appropriate earlier in development because the models 
take additional time and expertise to construct and evaluate, and 
it is seldom justified when performance details are sketchy at 
best.  

A common set of XML based interchange formats lets one use a 
variety of different tools as long as they support the interchange. 
Each tool must either provide an explicit import and export 
command, or provide an interface to/from a file and an XSLT 
translation can convert between the interchange format and the 
file. The translation can be relatively easy. 

Earlier work defined both a meta-model for software 
performance models and a PMIF using an EIA/CDIF (Electronic 
Industries Association/CASE Data Interchange Format) 
paradigm for transferring information between CASE tools [18, 
22]. The PMIF was subsequently enhanced and implemented in 
XML [20]. An exchange takes place via a file and internal tool 
information is translated to and from the file’s transfer format. 
The transfer format in the original CDIF standard used LISP as 
the implementation language. Today, XML is a more logical 
choice for a transfer format because it was designed for this 
purpose and there are many tools available to support the 
exchange of information in XML.  

This project uses the SPE meta-model as a starting point, and 
contributes the following to the interchange process: 

• An updated SPE meta-model 

• Definition of the XML schema based on the meta-model 

• Implementation of extensions to the XPRIT software to 
export UML models into the S-PMIF 

• Implementation of extensions to the SPE·ED software to 
import S-PMIF models 

• Demonstrated feasibility with an experimental proof of 
concept that uses both interchange formats to combine the use 
of software performance engineering models and system 
performance models to predict performance from a UML 
specification. 

After discussing related work, this paper describes the SPE 
meta-model and the XML schema based on it. Then it presents 
the SPE process for model exchanges and the required 
extensions to XPRIT and SPE·ED. The SPE process and the 
experimental proof of concept are presented. Plans for future 
work and conclusions complete the presentation. 

 

2. RELATED WORK 
In recent years, a significant amount of effort has been put into 
the inclusion of performance analysis and evaluation in the early 
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stages of a software development process.  A considerable part 
of it is summarized in [1].  

Many of these works transfer design specifications into a 
particular solver that can be based on Queueing Networks, Petri 
Nets or Process Algebra formalisms and that can be solved 
either analytically or by simulation tools. Some examples on 
these lines are: Gu and Petriu use XSLT (eXtensible Stylesheet 
Language for Transformations) to transform UML models in 
XML format to the corresponding Layered Queueing Network 
(LQN) description which can be read directly by existing LQN 
solvers [5].  Marzolla and Balsamo propose a “UML 
Performance Simulator” which transforms a UML software 
specification given by a set of annotated diagrams (Use Case, 
Activity and Deployment), with a discrete-event simulation 
model [8]. Savino et al. annotate UML diagrams and transform 
them into the Qnap modeling language [13]. Lopez-Grao et al. 
propose a method to translate several UML diagram types to 
analyzable GSPN models where performance requirements are 
annotated according to the UML Profile for Schedulability, 
Performance and Time [7]. Petriu and Woodside translate 
specifications from Use Case Maps into LQN models [11]. 

Differently, our work follows the software performance 
engineering approach where from an annotated UML software 
specification, a software performance model is first derived and 
evaluated using a software modeling tool, like SPE·ED [16, 17],  
SP [6], or HIT [2], which outputs are normally enough in early 
stages of design. When more specific performance measures are 
needed, the model can be exported as a Queuing Network model 
and analyzed with a system modeling tool, like Qnap. 
Furthermore, our approach proposes and uses common XML 
based interchange formats, S-PMIF and PMIF 2.0, which allow 
multiple tools to be used to solve the models. Tools may be used 
in a “plug and play” fashion to select the tool best suited for a 
particular problem. It simplifies the implementation of an 
interchange process because tools only need to interface with 
the interchange format and need not develop custom interfaces 
to each other. The process that we envision is illustrated in 
Figure 1. 

3. SPE META-MODEL 
The SPE meta-model formally defines the information required 
to perform an SPE study. This model is known as the SPE meta-
model because it is a model of the information that goes into 
constructing an SPE model. Note that this meta-model is 
different from the Performance Model Interchange Format 
(PMIF) discussed in [15, 18, 20]. The PMIF defines information 
exchanged between queueing network modeling tools (QNM) 
while the meta-model defines information to be exchanged 
between UML software design tools and performance tools. 
Additional information, such as the mapping of components to 
processing locations as well as the internal characteristics of 
software locations may be exchanged between UML and 
performance tools. This exchange may lay on PMIF or an 
extension of it where needed. 

3.1 SPE Meta-Model 2.0 
This meta-model defines the essential information required to 
create the software and system performance models as defined 
in [14, 19]. The SPE meta-model class diagram is shown in 
Figure 2a. Figure 2b shows the attributes of each object. (Note: 

Object attributes are typically defined as part of the class 
diagram. They are shown in Figure 2b here to conserve space.) 
The following paragraphs describe the classes and their 
relationships. The complete definition is in [21]. 
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Figure 1. The SPE interchange process 

 
An SPE study is based on Projects which contain one or 

more PerformanceScenarios. Each PerformanceScenario is 
modeled by an ExecutionGraph. An ExecutionGraph is 
composed of one or more Nodes and zero or more Arcs. A Node 
may be connected to 0, 1, or 2 other Nodes via an Arc.* Several 
types of Nodes may be used in constructing an ExecutionGraph:  

ProcessingNode: represents processing steps at an 
appropriate level of detail. There are four types of 
ProcessingNodes: 

1 BasicNode: represents a software processing step at the lowest 
level of detail appropriate for the current development stage. 

2 ExpandedNode: indicates that processing details are expanded 
in a subgraph at the next level of detail. The subgraph, itself, is 
another ExecutionGraph. 

3 LinkNode: represents a component whose execution 
requirements are specified in a previously saved performance 
scenario. 

                                                                 
* Note that some CompoundNodes may be connected to more than 2 

attached nodes, but Arcs are not defined for those connections. So 
Nodes can be connected to at most one predecessor and one successor 
Node by an Arc. 
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4 SynchronizationNode: represents communication and 
synchronization with a SynchronizationNode in another 
PerformanceScenario. A SynchronizationNode may be a 
SendNode or ReceiveNode.  

4.1 SendNode represents a call from one process to another. 
There are three types of SendNodes: 

4.1.1 SynchronousCall: represents a call in which the caller 
waits for a reply before proceeding  

4.1.2 DeferredSynchronousCall: represents a call in which the 
caller continues to execute and later requests the reply. If the 
reply is not available at that time then the caller waits. 

4.1.3 AsynchronousCall: represents a call with no reply. 

4.2 ReceiveNode: represents the receipt of a request from 
another process. There are 2 types of ReceiveNodes: 

Performance
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Figure 2a.  SPE Meta-Model Diagram 
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4.2.1 ReplyNode: represents receipt of request that requires a 
reply. It can be used with either a SynchronousCall or a 
DeferredSynchronousCall. 

4.2.2 NoReplyNode: represents receipt of a request for which a 
reply cannot be sent (i.e., an AsynchronouCall). 

CompoundNode: represents special processing structures, 
such as Case constructs, repetition, and parallel execution. 
There are four types of CompoundNode: 

1. RepetitionNode: represents processing that is repeated and 
a repetition factor specifies the number of repetitions. 

2. CaseNode: represents conditional execution of 
components, each with a probability of execution. 

3. PardoNode: represents parallel execution paths, each with 
a probability of being initiated. The parallel execution paths join 
when they finish. 

4. SplitNode: indicates the initiation of concurrent processes, 
each with a probability of being initiated, that need not join. 

A CompoundNode is also composed of one or more 
ProcessingNodes and one or more Arcs. 

The resources used by a Node are specified by one or more 
ResourceRequirements. A ResourceRequirement may be 
described by an optional Parameter. A Facility is a collection of 
Devices. A ResourceRequirement is executed on one or more 
Devices. A Device represents a unit that provides some 
processing service. ResourceRequirements are associated with 
Devices by an OverheadMatrix which specifies the amount of 
service that each resource type requires from various devices. 

The current version of the meta-model does not include 
performance requirements. Currently, performance requirements 
are defined informally, based on the type of problem and expert 
judgment. Inclusion of performance requirements in the meta-
model will require that they be more formally defined. This is a 
topic for future research.  

The OverheadMatrix merits some additional explanation. It is 
based on a concept in [19] and the SPE product, SPE•ED™ 
[16, 17] used in this demonstration. The OverheadMatrix is an 
associative entity; it describes the relationship between a 
ResourceName and a Device. An individual instance of 
OverheadMatrix contains a ResourceName a DeviceName and 
an AmountOfService. For example, the ResourceRequirement 
may specify the number of instructions to be executed. The 
OverheadMatrix would specify the CPU processing time per 
instruction as the AmountOfService for the CPU Device. The 
class may be viewed as a table with each instance corresponding 
to a row that specifies a distinct ResourceName/DeviceName 
pair such as: 

• instructions and the CPU processing time per instruction, 

• database updates and the CPU processing time per update 

• database updates and the Disk device visits per update.  

The use of the overhead matrix makes it possible to 
separate the portion of the model that describes the software 
from the portion that describes the execution environment. This 

is important for the SPE approach because developers are often 
able to specify the software resource requirements such as the 
number of database updates or messages transmitted, but are 
unable to specify the device requirements for them. The 
overhead matrix thus provides a mechanism to separate the two 
and to obtain the ResourceName and UnitsOfService from the 
software specification and the OverheadMatrix from other 
sources such as measurement tools or computer experts. 

3.2 Adjustments to the meta-model 
The following changes were made to the original SPE meta-
model to reflect more recent information in [19]: 

• The StateIdentification node was deleted and the 
SynchronizationNode was added a subclass of ProcessingNode 

• Facility was added 

• Project was added 

• Device definitions were modified to specify the specific 
kind of device (such as CPU, Disk, etc.) rather than the generic 
terms FCFS, NonFCFSDemandSpec, and NonFCFSTimeSpec. 

Other minor changes were made to class attributes for the XML 
implementation. For example, XML schemas allow names to be 
used as IDs and ID references, so NodeIds were eliminated. We 
changed the specification for names to match XML names in 
http://www.w3.orgTR/2004/REC-xml-20040204/#id. Other 
changes are similar to those made in [20]. 

3.3 S-PMIF XML Schema 
 

The diagram of a portion of the XML schema corresponding to 
the S-PMIF meta-model is shown in Figure 3. The complete 
schema is at www.perfeng.com/pmif/s-pmifschema.xsd. The 
following excerpt shows the schema definition for an 
ExecutionGraph: 

 <xs:complexType name="EG_type"> 
  <xs:sequence> 
   <xs:choice maxOccurs="unbounded"> 
    <xs:sequence> 
     <xs:choice> 
      <xs:element name="BasicNode" type="BasicNode_type"/> 
      <xs:element name="ExpandedNode" 

type="ExpandedNode_type"/> 
      <xs:element name="LinkNode" type="LinkNode_type"/> 
      <xs:element name="SynchronizationNode" 

type="SynchroNode_type"/> 
     </xs:choice> 
     <xs:element name="ResourceRequirement" 

type="ResourceRequirement_type" "minOccurs="0" 
maxOccurs="unbounded"> 

     </xs:element> 
    </xs:sequence> 
    <xs:element name="CompoundNode" 

type="CompoundNode_type"/> 
   </xs:choice> 
   <xs:element name="Arc" type="Arc_type" minOccurs="0" 

maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="EGname" type="xs:ID" use="required"/> 
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  <xs:attribute name="IsMainEG" type="xs:boolean" 
use="required"/> 

  <xs:attribute name="StartNode" type="xs:IDREF" 
use="required"/> 

  <xs:attribute name="ModificationDateTime" type="xs:dateTime" 
use="optional"/> 

  <xs:attribute name="SWmodelname" type="xs:string" 
use="optional"/> 

 </xs:complexType> 
  

A sample s-pmif.xml ExecutionGraph specification for this 
schema is in Section 5. 

 
The schema has 2 differences from the meta-model. First, we 
flattened the hierarchy in several areas to simplify the xml. For 
example, both Nodes and ProcessingNodes are eliminated from 
the schema and their attributes are moved to the nodes that 
inherit those attributes.  

Second, we made some elements and attributes optional in the 
schema even though they are not optional in a software 

performance model. For example, a workload intensity such as 
interarrival time is necessary to solve a software performance 
model; however, the developer of the UML software diagrams 
may not know that information so it won’t be required in the 
xml. Similarly, we made resource requirements, overhead 
matrix and device specifications optional. We discuss this issue 
further in the next section. 

We also created three separate schemas for the meta-model: 
Topology, Overhead_Matrix, and Device. They can be 
combined by including the appropriate schemas. Thus, 
Topology may include Overhead_Matrix which includes 
Device. This is useful because one may use any of the schemas 
without using the others. For example, if the overhead matrix 
specification is coming from another source it does not need to 
be included in the topology, and vice-versa. 

 
 
 

Figure 3. Portion of the XML schema corresponding to the S-PMIF meta-model 
 

4. SPE Model Interchange Process 
Our vision for the SPE model interchange process (shown in 
Figure 1) is: 

1. A software architect, designer, or developer would use a 
UML tool to create their model of the software and when ready 
for the assessment, export the model into S-PMIF. 

2. A software performance engineer would then import the S-
PMIF into a software performance modeling tool such as 
SPE·ED. They would likely need to supplement the information 
received from S-PMIF to add one or more of the following: 
resource requirements, facility and device characteristics, and 
the overhead matrix. The latter task may be skipped when the 
original UML model is annotated with all the additional 
performance information needed (using, for example, the UML 
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SPT profile [10]), and the translation tool is able to process this 
additional information. 

3. The software performance engineer would conduct 
performance studies, and if problems are found, modify the 
software performance model accordingly. 

4. After resolving any serious problems with the software 
architecture and/or design, they may export the model into 
PMIF.  

5. A performance engineer would import the PMIF into a 
system or network modeling tool for further investigation of 
performance properties of the network and computer system 
such as the effect of locking and contention with other work in 
the environment. 

Results would then be exchanged in the reverse direction and 
ultimately the software specialist would be able to view 
suggestions for performance improvements and automatically 
update the UML to reflect selected changes.Note that the 
reverse direction is not shown in Figure 1, nor part of this work. 
The meta-model and schema may need some modifications if 
performance results or changes to the software model, such as 
node coordinates or other revisions, are to be retained in the 
UML for future evaluations. 
 
This process differs from that proposed by other authors 
primarily because we envision the use of a software 
performance modeling tool such as SPE·ED, SP or HIT between 
the UML and the system performance modeling step using 
QNM, SPN, or PA. In our experience, we find many software 
problems that must be corrected before detailed study of the 
system performance is feasible. The case study described later 
illustrates. When problems are detected, it isn’t enough to know 
that the system is saturated. It is also necessary to determine 
which parts of the software contribute to the problem and how 
much, in order to determine options for solving an architecture 
or design problem. For example, the case study has a problem 
due to excessive disk usage. A software performance model can 
identify which portions of the software use the disk and enable 
the evaluation of different software alternatives that use less I/O. 
A system performance model, however, will be limited to 
hardware improvement alternatives such as more or faster 
devices because the detailed studies require data that is typically 
not available until later in development. At that stage, the time 
and cost to change the architecture or design is prohibitive so 
hardware alternatives are the only options that are viable. The 
best solution may be a combination of software and hardware 
improvements. Our model interchange process enables the 
evaluation of all those options. 

4.1 Philosophy 
The model interchange strategy that we adopted from CDIF [4] 
is “export everything you know and provide defaults for other 
required information”; and “import the parts you need and make 
appropriate assumptions for required data that is not in the 
schema and thus the interchange file.”  

We started with a use case for the SPE interchange process in 
which developers did not have resource requirement 
specifications, the facility or device information, etc. So it was 

necessary to fill in many default values such as equal 
probabilities for Case nodes, etc. 

Our PMIF experience led us to the realization that everything 
you know is not necessarily everything you use. For example, 
SPE·ED uses visits to specify routing, but it knows about 
probabilities, and it is relatively easy to calculate them. We 
created an “import-friendly” PMIF; that is, we include both 
visits and probabilities to make it easy on the import side. It is 
easy to do on output and it lets many importers use simple tools 
like XSLT rather than requiring custom code to do the import. 
The redundant specifications are currently optional.  

4.2 Exporting UML models to S-PMIF 
This is a two-steps task: (i) exporting UML diagrams from a 
CASE tool representation to an XML format, (ii) transforming 
the exported result into a S-PMIF model. 

For what concerns the first step, the XMI standard specifications 
[9] have been adopted by almost all UML CASE tools to export 
UML diagrams in XML. Actually XMI does not represent a 
specific Schema for UML diagrams, but gives formal 
specifications to build standard Schemas for UML diagrams. 
This is the reason for small differences among the XMI 
exporting results of UML tools. For the sake of this paper 
experiments we have used the Poseidon tool [12]. 

The XPRIT tool performs the second step [3]. XPRIT is made of 
two components: UML2EG, that allows to annotate Use Case 
and Sequence Diagrams and generate from the annotated 
diagrams an Execution Graph;  UML2QN, that allows to 
annotate a Deployment Diagram and generate from the 
annotated diagram a Queueing Network representing the 
hardware platform where the software shall run.  

For the sake of these experiments we have used only UML2EG, 
as the generation of a Queueing Network has been delayed in 
the process. In particular, we have exploited the XPRIT 
capability of producing the structure of an Execution Graph 
(owing S-PMIF) from one or more UML Sequence Diagrams 
(represented in XMI). The translation algorithm is based on 
visiting the Sequence Diagram and recognizing elementary 
patterns. For each pattern in a Sequence Diagram a 
corresponding pattern of an Execution Graph is associated.  The 
whole structure of the Sequence Diagram is used to interconnect 
elementary patterns in the Execution Graph. For example, 
UML2EG is able to recognize sequential and parallel patterns, 
synchronous and asynchronous communications. 

Some accommodations were needed on the UML diagrams to 
make XPRIT work on these experiments: 

1. In order to avoid XPRIT considering the paths that depart 
one after the other from the same SD axis (see draw()‘s leaving 
Beam in Figure 4) to all be parallel paths, we added return 
arrows to the diagrams; 

2. XPRIT does not cope with object creation, as all the names 
of components acting in a diagram need to be known in 
advance; therefore object creation has been modeled as a 
standard synchronous message between two existing 
components; 
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3. Software loops are not part of the UML 1.x standards 
(which is the basis of XPRIT), so message labels have been 
exploited to delimitate the starting and the ending messages of a 
loop in a Sequence Diagram. 

Note that the last limitation will disappear with UML 2 
Sequence Diagrams, where frames have been introduced to 
delimitate special interaction patterns. A new XPRIT release is 
being implemented based on UML 2, so many translation steps 
will become straightforward.   

 

4.3 Importing S-PMIF models into SPE·ED 
SPE·ED uses the Document Object Model (DOM) to import the 
s-pmif.xml. It first loads and parses the document, then uses 
DOM calls to walk through each execution graph and create the 
corresponding nodes and arcs in SPE·ED. 

 
SPE·ED required a custom interface because, rather than reading 
input from a file, it provides a graphical user interface that 
enables a user to quickly draw a model. When the input comes 
from an S-PMIF, there is currently no provision for location 
coordinates for the nodes. Therefore another special routine is 
required to “reformat” a graph and assign nodes to locations. 

4.4 Exporting a pmif.xml model from 
SPE·ED 
SPE·ED also uses the Document Object Model (DOM) to export 
the pmif.xml. It creates the entire document in memory, then 
writes it to a file. This facilitates the export because elements 
and attributes can be added in any order as long as they are 
added in the correct location. It is a relatively small file, e.g., 2-
3K for the example in section 5, so the memory requirements 
are modest. 

SPE·ED uses a standard topology for models. Each facility 
contains a CPU and one or more other types of devices. Within 
a facility the QNM is assumed to be a central server model. 
Workloads begin execution on the CPU and upon completion 
transit to one of the other devices, then back to the CPU until 
completion. A model can contain multiple facilities, each with 
this central service topology. 

Several other cases required special handling, such as generating 
source, sink, and think nodes, transit probabilities, generating 
separate servers when quantity of servers is greater than one, 
name substitutions, etc. Details are in [20]. 

4.5 Importing a pmif.xml model into Qnap 
Qnap reads the input (QNM specification and solving 
parameters) from a file. Ultimately, Qnap would have an 
interface that would read from its standard file OR the pmif.xml 
file. However, we did not have access to Qnap source code and 
we could not implement such an interface directly. Therefore, 
we translated the pmif.xml file into a file in Qnap’s format. 

The model translation from a pmif.xml file into a Qnap input 
file was done using XSLT. We generated a specific XSLT file 

that transforms a pmif.xml file into a file that can be directly 
read and executed by Qnap. The direct use of XSLT was 
feasible due to the possibility of specifying the stations by parts 
in the Qnap input file. This might not be possible for some other 
tools with stricter ordering in the input file, in which case two 
possibilities would arise: The use of DOM (as used by SPE·ED 
to export pmif.xml) or the use of XSLT together with a 
conventional programming language. The use of XSLT is fairly 
simple, therefore we would recommend XSLT when possible 
for the translation into a tool’s file format. 

For the case of a real implementation (i.e.,implementing an 
interface from the tool that would read from the xml file 
directly), the use of DOM would be necessary since XSLT can 
only transform an XML file into another file. It would probably 
be advisable to read the entire pmif.xml file into memory then 
interpret and insert parameters into appropriate internal data 
structures because of the ordering in the XML schema. That is, 
some transformations may require information from elements 
that have not been read yet. 

5. EXPERIMENTAL RESULTS 
For the proof of concept we used the Drawmod Architecture 1 
model described in Chapter 4 of [19]. The sequence diagram for 
the model is in Figure 4.  

The following is part of the XML file resulting from the XPRIT 
translation of the sequence diagram: 

 <PerformanceScenario ScenarioName="drawmod_1" 
SWmodelfilename="drawmod_1_SD.xmi"> 

  <ExecutionGraph EGname="drawmod_1" IsMainEG="true" 
StartNode="create_Model"> 

   <BasicNode NodeName="create_Model"/> 
   <BasicNode NodeName="draw_Model"/> 
   <BasicNode NodeName="open"/> 
   <BasicNode NodeName="find_modelID"/> 
   <BasicNode NodeName="find_modelID_beams"/> 
   <BasicNode NodeName="sort_beams"/> 
   <CompoundNode> 
    <RepetitionNode NodeName="r1"> 
     <ExpandedNode NodeName="e1" EGname="e1_ref"/> 
    </RepetitionNode> 
   </CompoundNode> 
   <BasicNode NodeName="close"/> 
   <Arc FromNode="create_Model" ToNode="draw_Model"/> 
   <Arc FromNode="draw_Model" ToNode="open"/> 
   <Arc FromNode="open" ToNode="find_modelID"/> 
   <Arc FromNode="find_modelID" 

ToNode="find_modelID_beams"/> 
   <Arc FromNode="find_modelID_beams" 

ToNode="sort_beams"/> 
   <Arc FromNode="sort_beams" ToNode="r1"/> 
   <Arc FromNode="r1" ToNode="close"/> 
  </ExecutionGraph> 
  <ExecutionGraph EGname="e1_ref" IsMainEG="false" 

StartNode="retrieve_beam"> 
     <!--Details omitted --> 
  </ExecutionGraph> 
 </PerformanceScenario> 
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: Model
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draw()
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find(modelID)
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Figure 4. Drawmod Sequence diagram 
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The Execution Graph has a Boolean attribute (IsMainEG) that 
indicates whether it is the main graph in the file or a sub-graph. 
It is followed by a sequence of nodes followed by a sequence of 
arcs between nodes. As long as the Sequence Diagram follows a 
sequential execution, all Basic Nodes are generated. Upon 
finding a loop, a Repetition Node is appended that refers to a 
subgraph identified from the EGname attribute “e1_ref.” The 
complete file is in [21]. 

Next the s-pmif.xml model was imported into SPE·ED  and the 
software model was created. The generated software model is 
shown in Figure 5. Note that the text does not fit into the 
execution graph nodes because the operating system routines 
use spaces to insert line breaks; however, the XML names 
cannot contain spaces. Some translation of names will be 
necessary to create “prettier” models.  

Next, we added the resource requirements (from the Drawmod 
example in [19]), then the model was solved. In general, 
software performance engineers will need to use the techniques 
in [19] to estimate requirements that are not in the interchange 
file. That is an important step in the overall process, but it is 
beyond the scope of this paper. 

The model was solved and problems were identified in the 
architecture. After making the architectural changes we 
produced Drawmod Architecture 3 (also described in [19]) and 
confirmed that it resolved the performance problems. Note that 
in this case, SPE·ED has the ability to solve the system execution 
model both analytically and with simulation to quantify the 
response time, utilization, etc. for computer resources so it isn’t 
necessary to export the model to get those results. There are 
other reasons why one might want to export the model, such as:  

• to compare solutions 

• to get additional metrics such as queue lengths 

• to study additional facets of the environment that might not 
fit the central server assumptions mentioned in section 4.4. 

So the next step in the proof of concept is to export the model 
from SPE·ED into pmif.xml. The following shows an excerpt 
containing the generated service request (produced from 
SPE·EDs conversion of the software performance model into 
the system performance model):  

 <ServiceRequest> 
  <DemandServiceRequest 

WorkloadName="Drawmod_Architecture_3" 
ServerID="CPU" ServiceDemand="3.574195E-03" 
TimeUnits="sec" NumberOfVisits="2219"> 

   <Transit To="Disk_A" Probability="4.867057E-02"/> 
   <Transit To="Disk_B" Probability="4.867057E-02"/> 
   <Transit To="Display" Probability="0.9022082"/> 
   <Transit To="UserThink" Probability="4.506535E-04"/> 
  </DemandServiceRequest> 
  <WorkUnitServiceRequest 

WorkloadName="Drawmod_Architecture_3" 
ServerID="Disk_A" NumberOfVisits="108"> 

   <Transit To="CPU" Probability="1"/> 
  </WorkUnitServiceRequest> 
  <WorkUnitServiceRequest 

WorkloadName="Drawmod_Architecture_3" 
ServerID="Disk_B" NumberOfVisits="108"> 

   <Transit To="CPU" Probability="1"/> 
  </WorkUnitServiceRequest> 
  <WorkUnitServiceRequest 

WorkloadName="Drawmod_Architecture_3" 
ServerID="Display" NumberOfVisits="2002"> 

   <Transit To="CPU" Probability="1"/> 
  </WorkUnitServiceRequest> 
 </ServiceRequest> 

 
The pmif.xml is then imported into Qnap. In this specific 
implementation the import consists of an XSLT translation from 
a file in pmif’s format into a file in Qnap’s format.  The 
generated Qnap input file for the Drawmod Architecture 3 is 
shown below. It can be seen that the stations need first to be 
declared and then they can be modified as many times as is 
wanted, so when reading the file sequentially, the last 
information read is the one that is taken. This makes the use of 
XSLT  very convenient.  

/DECLARE/ QUEUE UserThin, CPU; 
          QUEUE Disk_A, Disk_B, Display; 
          CLASS Drawmod_; 
          REAL TDrawmod; 
    
/STATION/  NAME= UserThin; 
           TYPE = INFINITE;   
           
/STATION/  NAME= CPU; 
           SCHED = PS;   
          
/STATION/  NAME = Disk_A; 
           SERVICE = EXP(0.03); 
           SCHED = FIFO;   
          
/STATION/  NAME = Disk_B; 
           SERVICE = EXP(0.03); 
           SCHED = FIFO;   
          
/STATION/  NAME = Display; 
           SERVICE = EXP(0.001); 
           TYPE = INFINITE;   
          
/STATION/  NAME = UserThin; 
           INIT(Drawmod_) = 10; 
           SERVICE(Drawmod_) = EXP(60); 
           TRANSIT(Drawmod_)= CPU, 1 ;    
 
/STATION/  NAME = Disk_A; 
          TRANSIT(Drawmod_) = CPU, 1 ;    
    
/STATION/  NAME = Disk_B; 
          TRANSIT(Drawmod_) = CPU, 1 ;    
    
/STATION/  NAME = Display; 
          TRANSIT(Drawmod_) = CPU, 1 ;    
    
/STATION/  NAME = CPU; 
           SERVICE(Drawmod_) = 

EXP(0.000001610723298783236); 
           TRANSIT(Drawmod_) = Disk_A, 4.867057E-02, 
       Disk_B, 4.867057E-02, 
       Display, 0.9022082, 
       UserThin, 4.506535E-04 ;    

 
The Qnap model is then solved and used for further study. The 
results of the initial solution are reported in [20] and are not 
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shown here. This proof of concept illustrates the feasibility of 
the SPE process using XML based interchange formats for using 
multiple tools, rather than the particular results obtained from 
the models. 

5.1 Lessons Learned 
We learned several lessons while conducting the experimental 
proof of concept that are described in the following paragraphs. 

We found that there may be different interpretations of a UML 
sequence diagram and it may not be clear which is the proper 
interpretation. For example, the sequence of draw()s in Figure 4 
were interpreted by XPRIT to be parallel steps because they did 
not have return arrows.  We often find that, for convenience, 
developers do not specify return arrows from calls, and we do 
not want to require this specification just so the models can be 
exported. For this exercise, we just inserted the return arrows. In 
UML 2 there is a specific construct for parallel execution so this 
issue will no longer be a problem. In general, the interchange 
shows the value of viewing processing steps in different 
notations to confirm that the processing is specified the way the 
developer intended. 

Note that the translated model in Figure 5 is far more detailed 
than the Drawmod model in Figure 4-18 of [19]. Many of the 
processing steps in the automatically generated model are not 
interesting from a performance standpoint, and the extra steps 
tend to “clutter” the model. This is a departure from the simple 
model strategy described earlier. This is a common problem 
with automatic translation of designs. In many cases it may be 
easier to just create a new model and omit those details initially. 
Some techniques for “pruning” an automatically generated 
model would make it better suited for SPE.  

This proof of concept illustrates one pass from UML to Qnap. 
The SPE process will actually be iterative and there will be a 
need to exchange multiple models in the forward as well as the 
reverse direction. Thus, we will need to be able to retain 
information that was added by tools during the evaluation so 
that it won’t have to be re-created each time, such as resource 
requirements, location coordinates, etc. We envision using the 
S-PMIF to transfer this information to the design tool where it 
will need to be imported, saved, and exported the next time this 
SPE interchange process is used. 

5.2 Future Work 
This work was an initial step in the overall SPE interchange 
process. Several additional steps are planned: 

• Update XPRIT to export the new constructs in UML 2.0. 

• Export resource requirements specified using the UML 
Profile for Schedulability, Performance and Time. 

• Define a meta-model and schema for the feedback path, in 
order to support the transformation of “abstract” performance 
results into “actual” design alternatives for UML or other CASE 
tools. 

• Define a meta-model and schema for the exchange of 
performance results from system performance modeling tools 
back to software performance engineering tools. 

• Additional studies of additional models using the 
interchange. 

6. CONCLUSIONS 
This paper has described two XML interchange formats that 
support an SPE process that facilitates the use of the 
performance assessment tool best suited to the analysis task, 
state of the software, and amount of performance data available. 
It used the original SPE meta-model [22] and PMIF 2.0 [20] as a 
starting point and presented an updated SPE meta-model, 
defined an XML schema based on the meta-model, implemented 
extensions to the XPRIT software to export UML models into 
the S-PMIF, implemented extensions to the SPE·ED software to 
import S-PMIF models, and demonstrated the feasibility with an 
experimental proof of concept of the SPE process using multiple 
interchange formats and tools. 

The interchange formats allow flexibility in when and how 
performance specifications are provided and even allow some 
specifications to be provided by measurement tools. The 
interchange also enables a “plug and play” paradigm for using 
performance modeling tools appropriate for the particular 
problem to be studied.  

Using a common format simplifies the tool implementation by 
requiring only an import and export interface to the interchange 
format rather than a custom interface to each tool that exchanges 
information. The implementation may be done using an XSLT 
translation external to tools that provide a file input/output 
interface. Thus, users of the tool can create (and share) their 
own interchange mechanism when tool vendors do not provide a 
custom interface. 

We have learned from this experience that real tool 
interoperability in software performance assessment can be 
achieved using XML technologies. The structures, the 
methodologies and the automatisms that we have separately 
defined and implemented before this experience have found 
here a common ground to share their potential. The use of 
different tools has highlighted some inconsistencies in the tools 
thus lead to improvements in the individual tools. 

We consider this experience as a starting point to investigate the 
integration of CASE tools and performance tools. Internal 
mechanisms need certainly to be refined, and a much wider 
application context can be considered for tool integration. In 
order to widen the scope of this work, other CASE tools and 
performance tools can be considered, and their ability to interact 
through these schemas (and their evolutions) shall be studied. 
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