
- 1 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

Abstract

Architectural decisions are among the earliest made in a
software development project. They are also the most
costly to fix if, when the software is completed, the
architecture is found to be inappropriate for meeting
quality objectives. Thus, it is important to be able to
assess the impact of architectural decisions on quality
objectives such as performance and reliability at the
time that they are made.

This paper describes PASA, a method for performance
assessment of software architectures. It was developed
from our experience in conducting performance assess-
ments of software architectures in a variety of applica-
tion domains including web-based systems, financial
applications, and real-time systems. PASA uses the prin-
ciples and techniques of software performance engineer-
ing (SPE) to determine whether an architecture is
capable of supporting its performance objectives. The
method may be applied to new development to uncover
potential problems when they are easier and less expen-
sive to fix. It may also be used when upgrading legacy
systems to decide whether to continue to commit
resources to the current architecture or migrate to a new
one. The method is illustrated with an example drawn
from an actual assessment.

1. Introduction

While the functionality delivered by a software applica-
tion is obviously important, it is not the only concern.
Over its lifetime, the cost of a software product is deter-
mined more by how well it achieves its objectives for
quality attributes such as performance, reliability/avail-
ability or maintainability than by its functionality.

Recent interest in software architectures has under-
scored the importance of architecture in determining
software quality. While decisions made at every phase
of the development process are important, architectural
decisions have the greatest impact on quality attributes
such as modifiability, reusability, reliability, and perfor-
mance. As Clements and Northrop note [Clements and
Northrup 1996]:

“Whether or not a system will be able to exhibit its desired
(or required) quality attributes is largely determined by the
time the architecture is chosen.”

While a good architecture cannot guarantee attainment
of quality goals, a poor architecture can prevent their
achievement.

Architectural decisions are among the earliest made in a
software development project. They are also the most
costly to fix if, when the software is completed, the
architecture is found to be inappropriate for meeting
quality objectives. Thus, it is important to be able to
assess the impact of architectural decisions on quality
objectives such as performance and reliability at the
time that they are made.

Performance, both responsiveness and scalability, is
critical to the success of today’s software systems. Many
software products fail to meet their performance objec-
tives when they are initially constructed. Fixing these
problems is costly and causes schedule delays, cost
overruns, lost productivity, damaged customer relations,
missed market windows, lost revenues, and a host of
other difficulties. In extreme cases, it may not be possi-
ble to fix performance problems without extensive rede-
sign and re-implementation. In those cases, the project
either becomes an infinite sink for time and money, or it
is, mercifully, canceled.

Performance cannot be retrofitted; it must be designed
into software from the beginning. The “make it run,
make it run right, make it run fast” approach is danger-

PASASM: A Method for the
Performance Assessment of Software Architectures

Lloyd G. Williams
Software Engineering Research

264 Ridgeview Lane
Boulder, Colorado 80302

(303) 938-9847
boulderlgw@aol.com

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico, 87504-2640

(505) 988-3811
http://www.perfeng.com/

SM PASA and Performance Assessment of Software Architec-
tures Method are service marks of Performance Solutions,
LLP.

- 2 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

ous. Our experience is that performance problems are
most often due to inappropriate architectural choices
rather than inefficient coding. By the time the architec-
ture is fixed, it may be too late to achieve adequate per-
formance by tuning.

This paper describes PASA, a method for performance
assessment of software architectures. It was developed
from our experience in conducting performance assess-
ments of software architectures in a variety of applica-
tion domains including web-based systems, financial
applications, and real-time systems. PASA uses the prin-
ciples and techniques of software performance engineer-
ing (SPE) to determine whether an architecture is
capable of supporting its performance objectives [Smith
and Williams 2002]. The method may be applied to new
development to uncover potential problems when they
are easier and less expensive to fix. It may also be used
when upgrading legacy systems to decide whether to
continue to commit resources to the current architecture
or migrate to a new one.

2. Related Work

Kazman and co-workers describe two related
approaches to the evaluation of software architectures.
The Software Architecture Analysis Method (SAAM)
[Kazman, et al. 1996] uses scenarios to derive informa-
tion about an architecture’s ability to meet certain qual-
ity objectives such as performance, reliability, or
modifiability. The Architecture Tradeoff Analysis
Method (ATAM) [Kazman, et al. 1998] extends SAAM
to consider interactions among quality objectives and
identify architectural features that are sensitive to more
than one quality attribute. Once these sensitivities have
been identified, tradeoffs between quality objectives can
be evaluated.

Both SAAM and ATAM have similarities to this work.
Like PASA, SAAM and ATAM are scenario-based.
Analysis of software architectures is based on the use of
scenarios to provide insight into how the architecture
satisfies quality objectives. In SAAM and ATAM, sce-
narios are informal narratives of uses of the software. In
PASA, performance scenarios are expressed formally, as
described below.

SAAM and ATAM consider a variety of software qual-
ity attributes in their analysis including reliability, modi-
fiability, and performance. ATAM makes use of
Attribute-Based Architectural Styles (ABASs) as an
assessment tool. An ABAS [Klein and Kazman 1999]
extends the concept of an architectural style by adding a
framework for reasoning about architectural decisions
with respect to a particular quality attribute (e.g., perfor-

mance, reliability). PASA also uses architectural styles
for analysis with a focus on general characteristics of
the architecture together with design guidelines [Will-
iams and Smith in preparation].

ATAM and PASA differ in their approach to perfor-
mance modeling. ATAM uses analytical models of cer-
tain architectural features while PASA uses more
general software execution and system execution mod-
els that may be solved analytically or via simulation
[Smith and Williams 2002]. ATAM is also concerned
with interactions between quality attributes and focuses
on architectural features where tradeoffs may be
required. PASA’s primary focus is on performance.
However, other quality attributes and tradeoffs between
them are considered as well, as discussed below.

Williams and Smith [Williams and Smith 1998] discuss
the performance evaluation of software architectures.
This paper extends that work with the inclusion of archi-
tectural styles and performance antipatterns as analysis
tools. It also formalizes the architecture assessment pro-
cess based on the general software performance engi-
neering process described in [Smith and Williams
2002].

Grahn and Bosch [Grahn and Bosch 1998] report some
preliminary results on characterizing three architectural
styles: pipe-and-filter, layered, and blackboard. They
used a simulation technique to determine the effects of
varying the number of components in each style. Their
work focused on general performance characteristics of
each style rather than techniques for assessing individ-
ual architectures.

Balsamo and co-workers [Balsamo, et al. 1998] discuss
an approach to performance evaluation of software
architectures based on use of the Chemical Abstract
Machine (CHAM) formalism. Their method automati-
cally derives a Queueing Network Model (QNM) from a
CHAM description of the architecture. Their work and
other similar approaches such as [Cortellesa and Miran-
dola 2000] and [Pooley and King 1999] focus on con-
necting design notations to performance models.

Other, earlier publications such as [Smith and Williams
1998] and [Smith and Williams 1997] focus on the mod-
eling of a system once it is understood. Much of the per-
formance assessment work is based on the SPE
techniques for modeling and analyzing software perfor-
mance early in the life cycle [Smith and Williams 2002],
[Smith 1990]. In contrast this work focuses specifically
on the assessment of a software architecture, and
addresses the method for gathering information, inter-

- 3 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

acting with clients, and applying SPE principles and
techniques to arrive at the results of the assessment.

3. The PASA Method

PASA is a method for the performance assessment of
software architectures. It uses the principles and tech-
niques of SPE [Williams and Smith 1998], [Smith and
Williams 2002] to identify potential areas of risk within
the architecture with respect to performance and other
quality objectives. If a problem is found, PASA also
identifies strategies for reducing or eliminating those
risks.

Our approach is scenario-based. Scenarios for important
workloads are identified and documented. These scenar-
ios then provide a means of reasoning about the perfor-
mance of the software as well as other qualities. They
also serve as a starting point for constructing perfor-
mance models of the architecture if more detailed stud-
ies are needed.

The PASA process consists of the nine steps summa-
rized below. The steps are typically performed in the
order given. In some cases, however, the order may be
varied for some reason, such as to take advantage of the
availability of someone with expertise in a particular
area. For example, someone with expertise about a par-
ticular component may only be available on a particular
day. Also, discovery of new information in one step
often requires revisiting a previous one, so iteration is
common.

1. Process Overview—The assessment process begins
with a presentation designed to familiarize both
managers and developers with the reasons for an
architectural assessment, the assessment process,
and the outcomes.

2. Architecture Overview—In this step, the develop-
ment team presents the current or planned architec-
ture.

3. Identification of Critical Use Cases —The externally
visible behaviors of the software that are important
to responsiveness or scalability are identified.

4. Selection of Key Performance Scenarios—For each
critical use case, the scenarios that are important to
performance are identified.

5. Identification of Performance Objectives—Precise,
quantitative, measurable performance objectives are
identified for each key scenario.

6. Architecture clarification and discussion—Partici-
pants conduct a more detailed discussion of the

architecture and the specific features that support the
key performance scenarios. Problem areas are
explored in more depth.

7. Architectural Analysis—The architecture is analyzed
to determine whether it will support the performance
objectives.

8. Identification of Alternatives—If a problem is found,
alternatives for meeting performance objectives are
identified.

9. Presentation of Results—Results and recommenda-
tions are presented to managers and developers.

The following sections describe each of these steps in
more detail.

In some cases, it is possible to conduct a complete
assessment in one intensive week. In most others, how-
ever, it is likely that the initial assessment will identify
potential problems that require performance measure-
ments and modeling before their impact can be quanti-
fied. When measurements and modeling are needed, the
process typically spans several, less-intensive weeks as
data is gathered and evaluated.

3.1 Process Overview
It is important that everyone involved understand the
purpose of the architecture assessment, the process that
will be used, the architecture and processing informa-
tion that is required, and the potential outcomes. Thus,
the assessment begins with a presentation that describes:

• the rationale for performing an architecture assess-
ment

• overview of SPE goals, model-based approach, data
required, and results produced

• the steps in the PASA process
• the architecture information needed to perform the

assessment
• tradeoffs between performance and other quality

attributes

There is also an opportunity for managers and develop-
ers to ask questions and express their concerns.

3.2 Architecture Overview
The goal of this step is for the assessment team to gain a
high-level understanding of the architecture before delv-
ing into its details. It starts with a presentation of the
current or planned architecture by one or more members
of the development team.

Typically, the assessment team has already reviewed the
available architecture documentation. Thus, this session
typically begins with a brief walkthrough of the archi-

- 4 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

tecture. This is followed by a question-and-answer ses-
sion that focuses on missing details and validating the
assessors’ understanding of the architecture.

This step may involve a significant discovery phase. In
many cases, the architecture is simply undocumented.
With legacy systems, even if there is architecture docu-
mentation, it is likely that there were changes made dur-
ing implementation that are not reflected in the
documentation or that the system has evolved so that the
documentation is no longer an accurate reflection of the
current state.

We have also found that most architecture documenta-
tion is informal. Much of what we receive as architec-
ture documentation consists of box-and-line diagrams
that illustrate the infrastructure or “technical architec-
ture.” These diagrams may indicate that the system uses
WebSphere and NTServer but they do little to reveal the
nature of the components that make up the system or the
relationships between them. There is also little informa-
tion on the dynamic aspects of performing common
functions.

To overcome these problems, it is often necessary to
deduce the architecture from developer interviews,
code, and other artifacts. We have found that eliciting
scenarios for the important uses of the system is a good
way to extract this information. Thus, this step and the
next two are often iterated. In many cases, the informa-
tion provided by precisely characterizing the key sce-
narios is a major revelation for the development team.
Often, this is one of the most valuable deliverables of
the assessment.

3.3 Identification of Critical Use Cases
Use cases describe externally visible behaviors of the
software. Critical use cases are those that are important
to the operation of the system, or that are important to
responsiveness as seen by the user. Critical use cases
may also include those for which there is a significant
performance risk, i.e., those for which there is a risk
that, if performance objectives are not met, the system
will fail or be less than successful. Typically, the critical
use cases are only a subset of the total number of uses of
the system.

Use cases are most often described from an end-user
point of view. For example, with an automated teller
machine (ATM) we might investigate customer use
cases that describe deposits, withdrawals, etc. For archi-
tecture assessments, however, it is important to also
consider other stakeholders. For example, a mainte-
nance upgrade may require downloading large amounts
of code to client machines over a local or wide-area net-

work. Maintainers will want to know that this can be
accomplished in a reasonable amount of time.

3.4 Selection of Key Performance Scenarios
Each use case consists of a set of scenarios that describe
the sequence of actions required to execute the use case.
Not all of the scenarios belonging to a critical use case
will be important from a performance perspective, how-
ever. For example, variants are likely to be executed
infrequently and, thus, will not contribute significantly
to overall performance

For each critical use case, we focus on the scenarios that
are executed frequently and on those that are critical to
the user’s perception of performance. For some systems,
it may also be necessary to include scenarios that are not
executed frequently, but whose performance is critical
when they are executed. For example, crash recovery or
maintenance upgrades may not occur frequently, but it
may be important that they are done quickly.

In many cases, particularly with legacy systems, use
cases and scenarios are not documented. In those cases,
the assessment team must work with the development
team to identify the important uses of the software and
detail the processing steps that are executed for the key
usage scenarios. The process used for eliciting this
information is similar to that used for performance
walkthroughs, as discussed in [Smith and Williams
2002].

Scenarios are documented using augmented UML
sequence diagrams [Booch, et al. 1999], [Smith and
Williams 2002]. In an object-oriented system, a
sequence diagram describes the objects (individual
objects, components, or subsystems) that cooperate to
perform a function and the sequence of interactions
between them. For non-object-oriented systems (as most
of the architectures that we encounter in fact are), a
sequence diagram documents the major software units
that perform a function and their interactions. The use of
sequence diagrams provides two advantages:

• The sequence diagram notation facilitates valida-
tion of the processing steps in the scenarios and
makes derivation of performance models straight-
forward.

• When the software architecture is unclear, con-
structing sequence diagrams helps the assessment
team understand the components and their interac-
tions. They also help the assessment team validate
their understanding of the architecture, and often
inform maintainers of legacy systems of the actual
behavior of their system.

- 5 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

3.5 Identification of Performance Objectives
As Kazman and co-workers note [Kazman, et al. 1996]:

“Software architectures are neither intrinsically good nor
intrinsically bad; they can only be evaluated with respect to
the needs and goals of the organizations that use them.”

In order for the assessment to be meaningful, those
needs and goals must be clearly defined. Each key sce-
nario should have at least one associated performance
objective. Typically, these will be end-to-end require-
ments. In some cases, however, it may be desirable to
break an end-to-end performance objective into sub-
objectives that are assigned as performance budgets to
each part of the processing

Performance objectives may be expressed in several dif-
ferent ways, including response time, throughput, or
constraints on resource usage. In each case, the objec-
tive should be quantitative and measurable. Vague state-
ments such as “the system shall be as fast as possible”
are not useful. There is no way that you can ever be sure
that you have met an objective like this. An objective
such as “the end-to-end time to process a typical user
request should be less than 2 seconds” is much more
useful.

It is also important to specify the conditions under
which the required performance is to be achieved for
each combination of scenario and objective. The condi-
tions include the workload mix and intensity.

3.6 Architecture Discussions
Because the architecture descriptions provided seldom
provide the information required for the assessment, we
usually schedule meetings with architects and designers
of key portions of the system, once we have identified
them, to learn more about component interactions.
When appropriate, we also meet with staff who were
involved in previous tuning efforts and those who may
have performance measurement data to learn as much as
we can about problem areas and current performance
metrics such as response time, utilizations, and resource
requirements of the system.

3.7 Architecture Analysis
Several techniques are brought to bear in analyzing the
performance of a software architecture. They include:

3.7.1 Identification of the underlying architectural
style(s)
Software architectural styles or patterns ([Shaw and
Garlan 1996], [Buschmann, et al. 1996], [Schmidt, et al.
2000]) describe the structural organization of a family of
systems that share common architectural features.
Architectural styles are similar to design patterns
[Gamma, et al. 1995] in that they capture, at the level of

overall system organization, recurring solutions to com-
mon problems in structuring software systems.

If the architecture is representative of one of the com-
mon architectural styles, we can use the general perfor-
mance characteristics of the style to reason about the
performance of that instance. For example, in a layered
architecture there is a great deal of overhead as requests
are passed from layer to layer. Thus, this style would not
be appropriate for situations where high throughput is
desired.

If the overall architectural style is appropriate but there
are deviations from the archetype in some details, these
deviations are explored to determine if they have a neg-
ative impact on performance. This is discussed in more
detail below.

3.7.2 Identification of performance antipatterns
Antipatterns [Brown, et al. 1998] are conceptually simi-
lar to patterns [Gamma, et al. 1995] in that they docu-
ment recurring solutions to common design problems.
They are known as antipatterns because their use (or
misuse) produces negative consequences. Antipatterns
document common mistakes made during software
development. They also document solutions for these
mistakes. Thus, antipatterns tell you what to avoid and
how to fix a problem when you find it.

Performance antipatterns document common perfor-
mance problems and how to fix them [Smith and Will-
iams 2000], [Smith and Williams 2002]. They capture
the knowledge and experience of performance experts
by providing a conceptual framework that helps analysts
to identify performance problems and suggesting ways
of solving them.

Antipatterns are refactored (restructured or reorganized)
to overcome their negative consequences. A refactoring
is a correctness-preserving transformation that improves
the quality of the software. For example, the interaction
between two components might be refactored to
improve performance by sending fewer messages with
more data per message. This transformation does not
alter the semantics of the application, but it may
improve overall performance. Refactoring may also be
used to enhance other quality attributes including reus-
ability, modifiability, or reliability.

3.7.3 Performance modeling and analysis
Portions of the architecture may require more quantita-
tive analysis. Initially, a simple analysis of performance
bounds is sufficient to identify problem areas. For
example, if your performance objective is to process
100 transactions per second then each transaction must
take less than 0.01 seconds to complete. Other perfor-

- 6 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

mance bounds are covered in [Lüthi, et al. 1997],
[Majumdar, et al. 1991], [Hsieh and Lam 1987],
[Stephens and Dowdy 1984], [Dowdy, et al. 1984],
[Eager and Sevcik 1983].

If the analysis of performance bounds indicates the need
for more detailed modeling, this is done in a second
phase of the assessment process. The use of models
makes it possible to quantitatively assess the detailed
performance of the software. The models also allow
analysts to quickly and easily explore architectural alter-
natives if problems are discovered.

The models used are deliberately simple so that feed-
back on the performance characteristics of the architec-
ture can be obtained quickly and inexpensively. The
goal is to use the simplest possible model that identifies
problems with the proposed architecture. These models
can also be carried over into the development phase and
elaborated to more closely represent the performance of
the emerging software.

The precision of the model results depends on the qual-
ity of the estimates of resource requirements. Because
these are difficult to estimate for software architectures,
SPE uses adaptive strategies, such as upper- and lower-
bounds estimates and best- and worst-case analysis to
manage uncertainty. For example, when there is high
uncertainty about resource requirements, analysts use
estimates of the upper and lower bounds of these quanti-
ties. Using these estimates, analysts produce predictions
of the best-case and worst-case performance. If the pre-
dicted best-case performance is unsatisfactory, they seek
feasible alternatives. If the worst case prediction is satis-
factory, they proceed to the next step of the development
process. If the results are somewhere in-between, analy-
ses identify critical components whose resource esti-
mates have the greatest effect and focus on obtaining
more precise data for them. A variety of techniques can
provide more precision, including: further refining the
architecture and constructing more detailed models or
constructing performance prototypes and measuring
resource requirements for key components.

Two types of models provide information for architec-
ture assessment: the software execution model and the
system execution model. The software execution model
represents key aspects of the software execution behav-
ior. Details of the construction and evaluation of these
models may be found in [Smith and Williams 2002]

Software execution models are generally sufficient to
identify performance problems due to poor architectural
decisions [Williams and Smith 1998]. However, in some
cases, there may be questions about effects due to con-

tention for resources. When these questions arise, it is
necessary to use a system execution model.

The system execution model is a dynamic model that
characterizes software performance in the presence of
factors, such as multiple users or other workloads, that
could cause contention for resources. The results
obtained by solving the software execution model pro-
vide input parameters for the system execution model.
Solving the system execution model provides the fol-
lowing additional information:

• more precise metrics that account for resource con-
tention

• sensitivity of performance metrics to variations in
workload composition

• effect of new software on service level objectives of
other systems

• identification of bottleneck resources
• comparative data on options for improving perfor-

mance via: workload changes, software changes,
hardware upgrades, and various combinations of
each

Details of the creation and evaluation of system execu-
tion models are also in [Smith and Williams 2002].

3.8 Identification of Alternatives
If performance problems are found, it is often possible
to identify alternatives that may make it possible to meet
performance objectives.

The following sections illustrate ways in which archi-
tectural alternatives may be identified.

3.8.1 Deviations from architectural style
In some cases, the architecture may resemble one of the
common architectural styles in many respects but devi-
ate from the archetype in one or more details. While a
deviation from the classic style does not necessarily
mean that there is a problem, it does indicate an issue
that should be explored.

For example, an architecture may deviate from the clas-
sic style in a way that obviously negates one or more of
the recognized performance advantages of that architec-
tural style. In those cases, bringing the architecture into
conformance with the style will produce performance
gains. For example, in one assessment, we discovered
that the development team had started with a classic
pipe-and-filter architecture but then compromised that
style during prototyping. The result was a monolithic
implementation in which all of the filters ran within a
single process. This limited the scalability of the appli-
cation which was a primary performance goal. Imple-
menting the software so that each filter can run

- 7 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

independently (as in the classic pipe-and-filter style)
improves scalability.

3.8.2 Alternative interactions between components
Sometimes, the interaction between two components
may be a source of performance problems. In these
cases, it may be possible to change the interaction to
improve responsiveness or throughput. For example,
using the Coupling Pattern [Smith and Williams 2002]
to match an interface to its most frequent use will often
improve performance.

3.8.3 Refactoring to remove an antipattern
If a performance antipattern is found during the analysis
step, refactoring the architecture to remove that antipat-
tern will improve performance.

For example, one of the antipatterns that we encounter
most frequently is the One-Lane Bridge [Smith and Wil-
liams 2002]. This antipattern arises whenever only one
(or a few) process(es) may proceed because of the need
to wait for a resource (e.g., a database lock or synchro-
nous call to a single-threaded process). The One-Lane
Bridge can cause large backlogs that cause wide vari-
ability in response times. The general solution to this
problem is to refactor the software to spread the load
either spatially (e.g., by accessing different portions of
the database) or temporally (e.g., by performing work at
different times). The specific solution will depend on
the characteristics of the application.

3.9 Presentation of Results
It is important that the PASA client receive a document
containing the mission, findings, specific steps to take,
the priority of the steps, and their relative importance.
The document may be prose or a copy of presentation
slides. This increases the likelihood that they will be
able to use the results of the assessment and will be able
to follow-up to quantify the benefit of the activity.

As noted above, in many cases, modeling is needed to
quantify problems and their improvements. Since rapid
feedback is important, in these cases preliminary results,
along with a modeling and measurement plan are pre-
sented at the end of the first week. Then, when the mod-
eling is complete, a final presentation summarizes all of
the findings.

4. Example Assessment

This example is drawn from an actual architecture
assessment. The details have been modified to preserve
confidentiality. In some cases, they have also been sim-
plified for presentation.

The system under consideration is a data acquisition
system that receives data from multiple sources, formats
and translates incoming messages, applies business
rules to interpret and process messages, updates a data
store with the data that was received, and prepares data
for additional downstream processing. The case study is
presented here as a generic data acquisition system. It is
representative of many of the applications that we have
reviewed, including order-processing (e.g., e-com-
merce), stock market data processing, call-detail record
processing, payment posting, and ECM data acquisition.

Management requested an architecture assessment
because they were about to commit to a system upgrade
whose goal was to increase throughput by a factor of
ten. While an increase in hardware capacity was consid-
ered, a ten-fold increase in hardware would not be cost-
effective. So, the goal of the assessment was to deter-
mine whether the existing architecture was adequate to
support the increased throughput or a new architecture
was needed. If the current architecture was deemed ade-
quate, then the development team requested that the
assessment team identify opportunities, both strategic
and tactical, for improving performance.

4.1 Process Overview
The first PASA step was a briefing for everyone
involved to explain the what we would be doing, what
they needed to provide, what we would do with it, and
what they could expect as a deliverable. The actual pre-
sentation is omitted here.

4.2 The Architecture
The architecture description we received consisted of
users manuals for the system administration features,
design documents for several of the key components,
and some class diagrams. None of the documents
focused on the most important use case, they all mixed
the various functions thus making it difficult to deter-
mine exactly what interactions occurred to process mes-
sages received from the data feeds. When asked
specifically what processing occurred, participants drew
a diagram similar to that in Figure 1 and said that the
data is grabbed from the feed, deblocked into individual
messages, passed to the message handler to update state
and act on the data received, then an output message is
formatted and written for the downstream processes.

Figure 1: Architecture Diagram

Deblocker
Message
Handler

Output
Writer

Data
Grabber

- 8 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

4.3 Use Cases
Use cases for this application include the data feeds for
the acquisition system, the downstream processes that
use the data, a switching feature that activates redundant
processing systems in case of failure, and system admin-
istration features. After reviewing the documentation,
we focused on the use case that takes messages from the
feed, formats them, applies business logic, updates the
data store, and sends them on for downstream process-
ing. Different use cases deal with different types of data.
The dominant use case is the one that processes an in-
range data reading since these make-up the bulk of the
data processed.

4.4 Key Performance Scenarios
The key performance scenario deals with processing an
error-free in-range data reading. Figure 2 shows the
sequence diagram for this scenario.

4.5 Performance Objectives
The system currently processes 2,000 messages per sec-
ond. Management anticipates that the upgraded system
must handle 20,000 messages per second. The end-to-
end time to process a message was not specified, how-

ever team members felt that it should take no more than
30 seconds between the time the message arrives and
when it is transmitted to downstream processes.

4.6 Architecture Discussion
This step involved several lengthy meetings with mem-
bers of the development team who could explain partic-
ular details of the current processing. This information
allowed us to map the processing steps in Figure 2onto
the processes and threads identified in the initial docu-
mentation.

Developers felt that, in order to cost-effectively achieve
a ten-fold increase in throughput, it would be necessary
to run more concurrent streams, speed up the current
streams to process more messages, or use a combination
of these two approaches. The team felt that the middle-
ware for passing messages between processes would be
a barrier to scalability, so several discussions focused on
the nature of the interactions with the middleware,
whether it was essential to maintain the current collec-
tion of shared versus non-shared objects, etc.

We also reviewed all available performance measure-
ments for the system. Most of them, however, were

Figure 2: Sequence diagram for processing in-range data.

theSensorState theGlobalState theActionTable

getData()

getData()

computeNewState()

update()

getData()

computeAction()

updateAction()

anOutputMessage
«create»

write()

forward(anOutputMessage)

applyBusinessRules()

par

update()

getNext()

aMessage

«create» anInRange
Reading

- 9 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

gathered during various focused tuning efforts and it
was not possible to determine the current processing
time for the steps in the scenario, or the portion of the
time spent in the middleware versus the Message opera-
tions.

4.7 Architecture Analysis
It became clear from the discussions that the system as
implemented would need some performance improve-
ments in order to achieve the desired throughput. Never-
theless, we were able to conclude that the architecture
itself was viable for the application, to identify some
clear successes that had been achieved, to identify some
performance antipatterns that should be the focus of
future efforts, and to specify the steps in a more detailed
performance benchmarking, measurement, and model-
ing study that would quantify the scalability of the sys-
tem. These are covered in the following sections.

4.7.1 Architecture Classification
After reviewing the initial documentation and architec-
ture discussions, it was clear that the overall architecture
is a classic pipe-and-filter style [Shaw and Garlan 1996]
in which each stage in the pipeline applies an incremen-
tal transformation to an incoming message before pass-
ing it to the next stage or sending it on for downstream
processing. The current implementation ran 20 streams
(pipelines) concurrently with each stream processing
approximately 100 messages per second to achieve a
throughput of 2000 messages per second.

The fundamental conclusion was that, while some per-
formance improvements were needed, the current archi-
tecture would be able to support the goal of a ten-fold
increase in throughput.

4.7.2 Performance Antipatterns
We found several performance antipatterns in the exist-
ing implementation [Smith and Williams 2002], [Smith
and Williams in preparation]. The presence of these
antipatterns presented significant limits to scalability.

• Excessive Dynamic Allocation—New message
objects were created every time a message was
received. For example, Figure 2 shows the creation
of new ,Q5DQJH5HDGLQJ and 2XWSXW0HVVDJH
objects. Figure 3 shows the class hierarchy for
messages. This is a deep hierarchy that is likely to
result in considerable expense for creation of
objects at the bottom of the lattice.

• god Class—The 0HVVDJH+DQGOHU in Figure 2
behaves like a god class. It gets data from the other
objects (i.e., WKH6HQVRU6WDWH, WKH*OREDO6WDWH, WKH�
$FWLRQ7DEOH), uses the data to determine processing
requirements, then sends the updated data back to

the container object. This results in extra message
traffic and potentially limits the concurrency in the
system because the Message Handler performs
most of the work.

• Unbalanced Processing—The algorithm used to
route messages from the data feed to the appropri-
ate parallel stream caused some of the parallel
streams to be much busier than others. Throughput
is maximized if all streams execute at their maxi-
mum rate.

• Unnecessary Processing—There were several pro-
cessing steps that could potentially be eliminated.
Both DQ ,QSXW 0HVVDJH and DQ 2XWSXW 0HVVDJH
were logged, but only one was necessary. When a
(temporary) backlog developed, old messages were
still processed by the system, but they should have
been discarded. Many messages that were not
needed by the system were received and processed
only to be discarded late in the processing.

4.7.3 Modeling
Several of the issues that were identified required mod-
eling to quantify their impact and as well as the
improvements to be realized from design alternatives. In
this case study, it was necessary to quantify the scalabil-
ity of the system to precisely determine the hardware
cost and software changes that would be necessary.

We constructed a software performance model from the
sequence diagram in Figure 2. A performance bench-
marking and measurement study was undertaken to
determine the resource requirements for the processing
steps in the scenario.

The first goal was to determine the performance budget
for the stages in the pipe-and-filter architecture. Table 1
shows that average amount of time for each stage is a

Figure 3: Message Class Hierarchy

Shared
Object

Message

Data
Reading

SensorData
Reading

InRange
Reading

OutofRange
Reading

State
Change

Error

...

- 10 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

function of the number of machines, the number of par-
allel pipeline streams on each machine, and the through-
put of each stream. For example, the first row shows that
with 20 streams running on one machine and a through-
put of 100 messages per second, each stage must com-
plete in 0.01 seconds to achieve 2,000 messages per
second. Several options are shown for achieving the
desired throughput of 20,000 messages per second.
Option 2 simply solves the problem by adding more
hardware (10 machines). Option 3 uses 4 machines,
reduces the number of pipelines to 10, and increases the
throughput of each stream, and so on. We will construct
a model to determine the viability of each alternative
for achieving the desired scalability.

We begin by constructing a model of the existing system
for validation. This model focuses on the 0HVVDJH +DQ�

GOHU stage in the pipe and filter because the measure-
ments confirmed that it is the step that limits the overall
throughput and scalability. The results of this model are

shown in Figure 4.† The overall time for the 0HVVDJH

+DQGOHU is under 0.01 seconds as required, and the first
step takes the majority of this time. The utilization sta-
tistics (not shown) matched those measured on the sys-
tem. Several other models were run under varying
workload intensities to confirm that the model results
matched the system measurements.

The next step modeled the case in row 4 of Table 1 to
see if the current implementation of the 0HVVDJH +DQ�

GOHU could meet the performance goal of 0.004 seconds.
The results in Figure 4 show that the total time was
0.015 seconds—far greater than the 0.004 seconds
required. The time required to create the LQ5DQJH5HDG�

LQJ and DQ2XWSXW0HVVDJH (Excessive Dynamic Allo-
cation) are significant problems in meeting this
performance objective. Furthermore, because the 0HV�

VDJH +DQGOHU is a god class and performs most of the

work of the system, we cannot easily break it into multi-
ple stages in a pipe and filter to increase throughput. If it
were redesigned, each processing step in the redesigned
scenario would have 0.004 seconds to complete rather
than requiring the entire scenario to complete in that
time.

The models showed that the primary problem was not
with the messaging middleware as suspected, but with
the excessive processing in one stage of the pipeline
(0HVVDJH +DQGOHU) and with the Excessive Dynamic
Allocation.

Note that it is possible to get these results from the mea-
surements without constructing the software model. We
have found it useful, however, to construct the model
and use it to explain the current performance of the sys-
tem, its limitations, and alternatives for improving per-
formance. It is much easier to “see” the performance
bottlenecks in the diagram than to find them in a table of
numbers. (If that were easy, the developers would have
already identified the problem and corrected it). The
software performance model can then be used to evalu-
ate different designs for the 0HVVDJH +DQGOHU that
would enable it to operate in more stages, and to evalu-
ate other combinations of machines, streams and
throughputs to achieve the desired scalability.

4.8 Identification of Alternatives
We were able to identify several alternatives for improv-
ing performance. They are categorized as either strate-
gic (those that require a significant amount of work but
have a potentially large payoff) and tactical (those that
require little work but have a smaller payoff).

Strategic Improvements—In addition to improvements
discussed above for removing the Excessive Dynamic
Allocation and god Class antipatterns, the Unnecessary
Processing and the Unbalanced Processing, there were
other opportunities to significantly improve perfor-
mance by applying Performance Principles:

• Instrumentation Principle—the software should
have additional code to understand and control per-

Table 1: Performance Objectives

Machines Streams
Stream

Throughput
Performance

Objective
Total

Throughput

1 1 20 100 0.01 2,000

2 10 20 100 0.01 20,000

3 4 10 500 0.002 20,000

4 4 20 250 0.004 20,000

†. The models were constructed and solved using the
SPE•ED SPE tool. www.perfeng.com.

- 11 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

formance. It was impossible to determine the
resource requirements for critical processing steps
without the special benchmarking and measurement
study. It is vital to quantify the resource demand of
processing steps to better understand and control
performance; to identify bottlenecks and quantify
proposed tactical improvements for effective priori-
ties on implementation, and establish performance
budgets for stages in the pipeline.

• Spread-the-Load Principle—monitor and control
the scheduling of messages to parallel streams,
purge aged messages, and filter unnecessary mes-
sages.

Tactical Improvements—Other Performance Patterns
could also be applied to immediately improve system
throughput:

• Slender Cyclic Functions—Remove all unnecessary
processing from the critical path, and allocate pro-
cessing that can be performed off the critical path to
other concurrent processes

• Batching—Reduce processing by getting a batch of
messages to process rather than one at a time

4.9 Presentation of Results
A preliminary presentation discussed the proposed
improvements and outlined a plan for the measurement
and modeling steps. Once the modeling phase was com-
plete, a final presentation summarized all the findings
and recomendations.

4.10 Summary
The architecture assessment was successful. It docu-
mented the overall end-to-end processing for messages
in the current architecture. It determined that the current
architecture was viable for achieving the desired scal-
ability. It identified problem areas that required correc-
tion in order to achieve the desired scalability, and
quantified the alternatives so that developers could
select the most cost-effective solution. They ultimately
implemented the changes and were able to meet their
throughput goals.

5. Conflicts and Tradeoffs

Software performance is not achieved in isolation. Per-
formance objectives must be balanced with other soft-
ware quality concerns including: reliability/availability,
safety and modifiability. Sometimes, these objectives
conflict when architectural features have opposing
effects on different quality attributes. For example,
redundancy may increase availability but negatively
impact performance. Identifying the areas of the archi-
tecture where conflicts occur and quantifying their
effects makes it possible to find a workable compro-
mise.

As with performance objectives, in order to evaluate the
effect of architectural decisions on qualities such as
modifiability or reliability, it is important that the
requirements for these attributes be stated precisely.
Evaluating tradeoffs also requires that quality require-
ments be prioritized. Obtaining precise quality require-

(a) Current Implementation (b) Option 4 Results

Figure 4: Model Results

getNext
And

Create

doState
Calcs

apply
Business

Rules

determine
Action

create
Output

Message write
Output

Message

forward
Message

updateAction

Residence Time: 0.0010 sec

0.0042

0.0002

0.0026

0.0008

0.0019

0.0001

0.0001

0.0002

getNext
And

Create

doState
Calcs

apply
Business

Rules

determine
Action

create
Output

Message write
Output

Message

forward
Message

updateAction

Residence Time: 0.0154 sec

0.0065

0.0003

0.0037

0.0012

0.0030

0.0001

0.0002

0.0002

- 12 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

ments and prioritizing them is often the most difficult
part of the process.

6. Summary and Conclusions

The architecture of a software system is the primary fac-
tor in determining whether or not a system will meet its
performance and other quality goals. Architecture
assessment is a vital step in the creation of new systems
and the evaluation of the viability of legacy systems for
controlling the performance and quality of systems.

This paper presented PASA, a method for performance
assessment of software architectures. It described the
method we use in a variety of application domains
including web-based system, financial applications, and
real-time systems. It described the nine steps in the
method:

1. Process Overview

2. Architecture Overview

3. Identification of Critical Use Cases

4. Selection of Key Performance Scenarios

5. Identification of Performance Objectives

6. Architecture Clarification and Discussion

7. Architectural Analysis

8. Identification of Alternatives

9. Presentation of Results

A case study based on an actual performance assess-
ment of a system architecture illustrated the steps in the
method as well as typical findings for such an assess-
ment.

The PASA method is evolving as we gain more experi-
ence on a variety of applications. With this experience,
we are discovereing and documenting new Performance
Antipatterns [Smith and Williams in preparation]. We
are also currently codifying the results from multiple
similar assessments into some general observations
about the applicability of architectural styles to particu-
lar types of applications [Williams and Smith in prepa-
ration].

7. References

[Balsamo, et al. 1998] S. Balsamo, P. Inverardi, and C.
Mangano, "An Approach to Performance
Evaluation of Software Architectures," Proceedings
of the First International Workshop on Software

and Performance (WOSP98), Santa Fe, NM,
October, 1998, pp. 178-190.

[Booch, et al. 1999] G. Booch, J. Rumbaugh, and I.
Jacobson, The Unified Modeling Language User
Guide, Reading, MA, Addison-Wesley, 1999.

[Brown, et al. 1998] W. J. Brown, R. C. Malveau, H.
W. McCormick III, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis, New York, John Wiley and
Sons, Inc., 1998.

[Buschmann, et al. 1996] F. Buschmann, R. Meunier,
H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture: A System of
Patterns, Chichester, England, John Wiley and
Sons, 1996.

[Cortellesa and Mirandola 2000] V. Cortellesa and R.
Mirandola, “Deriving A Queueing Network-based
Performance Model from UML Diagrams,”
Proceedings of the Second International Workshop
on Software and Performance (WOSP2000),
Ottawa, Canada, September, 2000, pp. 58-70.

[Clements and Northrup 1996] P. C. Clements and L.
M. Northrup, "Software Architecture: An
Executive Overview," Technical Report No. CMU/
SEI-96-TR-003, Carnegie Mellon University,
Pittsburgh, PA, February, 1996.

[Dowdy, et al. 1984] Lawrence W. Dowdy, Derek L.
Eager, Karen D. Gordon and Lawrence V. Saxton,
“Throughput Concavity and Response Time
Convexity,” Information Processing Letters, vol.
19, no. 4, pp. 209-212, 1984.

[Eager and Sevcik 1983] Derek L. Eager and Kenneth
C. Sevcik, “Performance Bound Hierarchies for
Queueing Networks,” Transactions On Computer
Systems vol. 1, no. 2, pp. 99-115, 1983.

[Gamma, et al. 1995] E. Gamma, R. Helm, R. Johnson,
and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Reading, MA,
Addison-Wesley, 1995.

[Grahn and Bosch 1998] H. Grahn and J. Bosch, "Some
Initial Performance Characteristics of Three
Architectural Styles," Proceedings of the First
International Workshop on Software and
Performance (WOSP98), Santa Fe, NM, October,
1998, pp. 197-198.

[Hsieh and Lam 1987] Ching-Tarng Hsieh and Simon
S. Lam, “Two Classes of Performance Bounds for
Closed Queueing Networks,” Performance
Evaluation, vol. 7, no. 1, pp. 3-30, 1987.

- 13 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

[Kazman, et al. 1998] R. Kazman, M. Klein, M.
Barbacci, T. Longstaff, H. Lipson, and J. Carriere,
"The Architecture Tradeoff Analysis Method,"
Proceedings of the Fourth International
Conference on Engineering of Complex Computer
Systems (ICECCS98), August, 1998.

[Kazman, et al. 1996] R. Kazman, G. Abowd, L. Bass,
and P. Clements, "Scenario-Based Analysis of
Software Architecture," IEEE Software, vol. 13, no.
6, pp. 47-55, 1996.

[Klein and Kazman 1999] M. Klein and R. Kazman,
"Attribute-Based Architectural Styles," Technical
Report No. CMU/SEI-99-TR-022, Software
Engineering Institute, Carnegie-Mellon University,
Pittsburgh, PA, October, 1999.

[Lüthi, et al. 1997] Johannes Lüthi, Shikharesh
Majumdar, Gabriele Kotsis, and Günter Haring,
“Performance Bounds for Distributed Systems with
Workload Variabilities and Uncertainties,” Parallel
Computing, vol. 22, no. 13, pp. 1789-1806, 1997.

[Majumdar, et al. 1991] Shikharesh Majumdar, C.
Murray Woodside, J. E. Neilson and Dorina C.
Petriu, “Performance Bounds for Concurrent
Software with Rendezvous, Performance
Evaluation, vol. 13, no. 4, pp. 207-236, 1991.

[Pooley and King 1999] R. Pooley and P. King, “The
Unified Modeling Language and Performance
Engineering,” IEE Proceedings-Software, vol. 146,
no. 1, pp. 2-10, 1999.

[Schmidt, et al. 2000] D. Schmidt, M. Stal, H. Ronert,
and F. Buschmann, Pattern-Oriented Software
Architecture Volume 2: Patterns for Concurrent and
Networked Objects, Chichester, England, John
Wiley and Sons, 2000.

[Shaw and Garlan 1996] M. Shaw and D. Garlan,
Software Architecture: Perspectives on an
Emerging Discipline, Upper Saddle River, NJ,
Prentice Hall, 1996.

[Smith and Williams in preparation] C. U. Smith and L.
G. Williams, “New Software Performance
Antipatterns,” manuscript in preparation.

[Smith and Williams 2002] C. U. Smith and L. G.
Williams, Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software,
Reading, MA, Addison-Wesley, 2002.

[Smith and Williams 2000] C. U. Smith and L. G.
Williams, "Software Performance Antipatterns,"
Proceedings of the Second International Workshop
on Software and Performance (WOSP2000),
Ottawa, Canada, September, 2000, pp. 127-136.

[Smith and Williams 1998] C. U. Smith and L. G.
Williams, "Performance Engineering Evaluation of
CORBA-based Distributed Systems with SPEED,"
in Computer Performance Evaluation, Lecture
Notes in Computer Science, vol. 1469, R. Puigjaner,
N. N. Savino and B. Serra, ed., Berlin, Springer-
Verlag, 1998, pp. 321-335.

[Smith and Williams 1997] C. U. Smith and L. G.
Williams, "Performance Engineering Evaluation of
Object-Oriented Systems with SPEED," in
Computer Performance Evaluation: Modelling
Techniques and Tools, Lecture Notes in Computer
Science, vol. 1245, R. Marie, B. Plateau, M.
Calzarossa and G. Rubino, ed., Berlin, Springer-
Verlag, 1997, pp. 135-154.

[Smith 1990] C. U. Smith, Performance Engineering of
Software Systems, Reading, MA, Addison-Wesley,
1990.

[Stephens and Dowdy 1984] Lindsey E. Stephens and
Lawrence W. Dowdy, “Convolutional Bound
Hierarchies,” SIGMETRICS, pp. 120-133, 1984

[Williams and Smith 1998] L. G. Williams and C. U.
Smith, "Performance Evaluation of Software
Architectures," Proceedings of the Workshop on
Software and Performance (WOSP98), Santa Fe,
NM, October, 1998.

[Williams and Smith in preparation] L. G. Williams
and C. U. Smith, “Performance Characteristics of
Common Architectural Styles: Pipe-and-Filter and
Client-Server,” manuscript in preparation.

